cho hệ phương trình \(\left\{{}\begin{matrix}4x-my-m-6=0\\mx-y-2m=0\end{matrix}\right.\)
tìm m để : a. hệ phương trình vô nghiệm
b. hệ phương trình có nghiệm duy nhất
c. hệ phương trình có vô số nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hệ pt có một nghiệm duy nhất thì \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow2m\ne4\Leftrightarrow m\ne2\)
Từ pt 1 ta có: y=mx-1 thế vào pt 2 ta đc:
4x-m(mx-1)=2
\(\Leftrightarrow4x-m^2x+m=2\)
\(\Leftrightarrow\left(4-m^2\right)x=2-m\) (*)
Để hệ có nghiệm duy nhất thì pt (*) phải óc nghiệm duy nhất
tức \(4-m^2\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)
Vây \(m\ne\pm2\) thì hệ có nghiệm duy nhất
a, Thay \(m=-1\) vào
\(=>\left\{{}\begin{matrix}-x+y=1\\2x-y=-1\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
b, Để hệ pt có nghiệm duy nhất :
\(\dfrac{m}{2}\ne\dfrac{1}{-1}\\ =>\dfrac{m}{2}\ne-1\\ =>m\ne-2\)
Lời giải:
a) Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x+y=1\\ x+y=1\end{matrix}\right.\Leftrightarrow x+y=1\Leftrightarrow y=1-x\)
Khi đó, hệ có nghiệm $(x,y)=(a,1-a)$ với $a$ là số thực bất kỳ.
Khi $m=-1$ thì hệ trở thành:
\(\left\{\begin{matrix} x-y=1\\ -x+y=1\end{matrix}\right.\Rightarrow (x-y)+(-x+y)=2\Leftrightarrow 0=2\) (vô lý)
Vậy HPT vô nghiệm
Khi $m=2$ thì hệ trở thành: \(\left\{\begin{matrix} x+2y=1\\ 2x+y=1\end{matrix}\right.\Rightarrow (x+2y)-(2x+y)=1-1=0\Leftrightarrow y-x=0\Leftrightarrow x=y\)
Thay $x=y$ vào 1 trong 2 PT của hệ thì có: $3x=3y=1\Rightarrow x=y=\frac{1}{3}$Vậy........
b)
PT $(1)\Rightarrow x=1-my$. Thay vào PT $(2)$ có:
$m(1-my)+y=1\Leftrightarrow y(1-m^2)=1-m(*)$
b.1
Để HPT có nghiệm duy nhất thì $(*)$ có nghiệm $y$ duy nhất
Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow (1-m)(1+m)\neq 0$
$\Leftrightarrow m\neq \pm 1$
b.2 Để HPT vô nghiệm thì $(*)$ vô nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m\neq 0$
$\Leftrightarrow m=-1$
b.3 Để HPT vô số nghiệm thì $(*)$ vô số nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m=0$
$\Leftrightarrow m=1$
c) Ở b.1 ta có với $m\neq \pm 1$ thì $(*)$ có nghiệm duy nhất $y=\frac{1}{m+1}$
$x=1-my=\frac{1}{m+1}$
Thay vào $x+2y=3$ thì:
$\frac{3}{m+1}=3\Leftrightarrow m=0$
Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$
$m(5-2y)+y=4$
$\Leftrightarrow y(1-2m)=4-5m$
Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$
Khi đó: $y=\frac{4-5m}{1-2m}$
$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$
$\Leftrightarrow m> \frac{4}{5}(2)$
Từ $(1); (2)\Rightarrow m> \frac{4}{5}$
$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$
$\Leftrightarrow \frac{5m-7}{1-2m}>0$
$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)
$\Leftrightarrow m< \frac{7}{5}$
Vậy $\frac{4}{5}< m< \frac{7}{5}$
Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$
$m(5-2y)+y=4$
$\Leftrightarrow y(1-2m)=4-5m$
Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$
Khi đó: $y=\frac{4-5m}{1-2m}$
$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$
$\Leftrightarrow m> \frac{4}{5}(2)$
Từ $(1); (2)\Rightarrow m> \frac{4}{5}$
$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$
$\Leftrightarrow \frac{5m-7}{1-2m}>0$
$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)
$\Leftrightarrow m< \frac{7}{5}$
Vậy $\frac{4}{5}< m< \frac{7}{5}$