K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

Xét đường tròn (O;R) có \(\widehat{MTA}\)là góc tạo bởi tiếp tuyến MT (tiếp điểm là T) và dây cung TA \(\Rightarrow\widehat{MTA}=\frac{1}{2}sđ\widebat{TA}\)

Mà \(\widehat{MBT}\)là góc nội tiếp chắn cung TA \(\Rightarrow\widehat{MBT}=\frac{1}{2}sđ\widebat{TA}\)

\(\Rightarrow\widehat{MTA}=\widehat{MBT}\left(=\frac{1}{2}sđ\widebat{TA}\right)\)

Xét \(\Delta MTA\)và \(\Delta MBT\), ta có: \(\widehat{BMT}\)chung; \(\widehat{MTA}=\widehat{MBT}\left(cmt\right)\)

\(\Rightarrow\Delta MTA~\Delta MBT\left(g.g\right)\)\(\Rightarrow\frac{MT}{MB}=\frac{MA}{MT}\Rightarrow MT^2=MA.MB\)(1)

Hoàn toàn tương tự, ta có \(MT^2=MC.MD\)(2)

Vì MT là tiếp tuyến tại T của (O) \(\Rightarrow MT\perp OT\)tại T \(\Rightarrow\Delta OMT\)vuông tại T

\(\Rightarrow OM^2=MT^2+OT^2\)\(\Rightarrow MT^2=OM^2-OT^2\)

Đồng thời MT là tiếp tuyến tại T của (O;R) \(\Rightarrow OT=R\)

Như vậy ta có \(MT^2=OM^2-R^2\)(3)

Từ (1), (2) và (3) ta có đpcm.

11 tháng 4 2017

Xét hai tam giác BMT và TMA, chúng có:

chung

= (cùng chắn cung nhỏ )

nên ∆BMT ~ ∆TMA, suy ra =

hay MT2 = MA. MB

9 tháng 2 2022

Xét (O) có:

  CDA và ABC là 2 góc nội tiếp cùng chắn cung AC

=> góc CDA = góc ABC hay góc MDA= gócMBC

Xét tam giác MDA và tam giác MBC có:

 góc MDA = góc MBC(cmt)

 góc M chung

=> 2 tam giác trên đồng dạng(g.g)

=>\(\dfrac{MD}{MB}=\dfrac{MA}{MC}\)

=>MA.MB=MC.MD

16 tháng 2 2022

undefined

10 tháng 4 2022

a) tứ giác AOBM nội tiếp thì có tâm đường tròn là trung điểm OM

cần CM tứ giác OIMB nội tiếp: dùng tổng hai góc đối cộng với nhau bằng 180o, mà đã có OBM=90o, mà I là trung điểm dây cung CD nên OI vuông góc CD luôn => OIM=90o

Vậy tứ giác OIMB nội tiếp thì tâm đường tròn cũng tại trung điểm OM luôn

b) 5 điểm A,I,O,B,M cùng thuộc 1 đtron

=> tứ giác AIOB nội tiếp => góc AIB=AOB (cùng chắn cung)

tứ giác AIOM nội tiếp => góc AIM=AOM (ccc)

mà góc AOM=1/2AOB=AIM=1/2AIB

=> BIM=1/2AIB (đpcm