Tính nhanh:(1/2.4)+(1/4.6)+(1/6.8)+.....+(1/98.100)=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...........+\frac{1}{98.100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
cho mình nha!
\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+....+\frac{1}{98\cdot100}\)
\(=\frac{1}{2}\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+.......+\frac{2}{98\cdot100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{49}{200}\)
M = \(\dfrac{5}{2.4}\) + \(\dfrac{5}{4.6}\)+ \(\dfrac{5}{6.8}\)+ ...+ \(\dfrac{5}{96.98}\)+ \(\dfrac{5}{98.100}\)
M = \(\dfrac{5}{2}\).( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)+ \(\dfrac{2}{6.8}\)+...+ \(\dfrac{2}{96.98}\)+ \(\dfrac{2}{98.100}\))
M = \(\dfrac{5}{2}\).( \(\dfrac{1}{2}-\dfrac{1}{4}\)+ \(\dfrac{1}{4}-\dfrac{1}{6}\)+ \(\dfrac{1}{6}\) - \(\dfrac{1}{8}\)+...+ \(\dfrac{1}{96}\)-\(\dfrac{1}{98}\)+ \(\dfrac{1}{98}\)-\(\dfrac{1}{100}\))
M = \(\dfrac{5}{2}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))
M = \(\dfrac{49}{40}\)
\(x\) \(\times\) M - 1 = \(\dfrac{20}{29}\)
\(x\) \(\times\) \(\dfrac{49}{40}\) = \(\dfrac{20}{29}\) + 1
\(x\) \(\times\) \(\dfrac{49}{40}\) = \(\dfrac{49}{29}\)
\(x\) = \(\dfrac{49}{29}\) : \(\dfrac{49}{40}\)
\(x\) = \(\dfrac{40}{29}\)
\(\frac{2.4+4.6+6.8+...+98.100}{1.2+2.3+3.4+...+49.50}=\frac{4.\left(1.2+2.3+3.4+...+49.50\right)}{1.2+2.3+3.4+...+49.50}=\frac{4}{1}=4\)
\(\frac{5}{2.4}+\frac{5}{4.6}+...+\frac{5}{98.100}\)
= \(\frac{5}{2}-\frac{5}{4}+\frac{5}{4}-\frac{5}{6}+...+\frac{5}{98}-\frac{5}{100}\)
= \(\frac{5}{2}-\frac{5}{100}\)
= \(\frac{49}{50}\)
\(Q=\frac{5}{2.4}+\frac{5}{4.6}+...+\frac{5}{98.100}\)
\(=5\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=\frac{5}{2}.2.\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=\frac{5}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{5}{2}.\frac{49}{100}=\frac{49}{40}\)
\(\Rightarrow Q=\frac{49}{40}\)