Cho tam giác ABC có AB = AC, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy E sao cho: AD = AE.
a) Chứng minh rằng: . Suy ra AM là phân giác của góc A
b) Gọi K là giao điểm của AM và DE. Chứng minh rằng:
c) Trên tia đối của tia ED lấy điểm F sao cho FE = MC, gọi H là trung điểm của EC. Chứng minh rằng: ba điểm M, H, F thẳng hàng.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
24 tháng 12 2021
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
26 tháng 1 2023
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
b: Xét ΔADH và ΔAEH có
AD=AE
góc DAH=góc EAH
AH chung
=>ΔADH=ΔAEH
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
6 tháng 12 2021
1: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
6 tháng 12 2021
1: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là tia phân giác