Cho hình vuông ABCD có độ dài cạnh là 1. M là trung điểm của CD. AM cắt BD tại P, BM cắt AC tại Q. O là giao của AC và BD. Hãy tính diện tích hình MPOQ (xem hình vẽ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử có phương án sắp xếp các số từ 1 đến 10 vào các đỉnh và các cạnh của ngũ giác sao cho tổng các số trên mỗi cạnh đều bằng nhau và bằng S.
Khi đó, ta lấy tổng tất cả 5 cạnh bằng 5.S và trong tổng này các số trên các cạnh được tính một lần, còn các số trên các đỉnh được tính hai lần. Ta gọi tổng các số trên 5 đỉnh là T, ta có:
5.S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + T
Hay là:
S = (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + T)/5 = 11 + T/5
Vậy để S nhỏ nhất có thể thì T cũng phải nhỏ nhất, mà tổng T có 5 số trong các số {1,2, ..., 10} nên T nhỏ nhất khi T = 1 + 2 + 3 + 4 + 5 = 15.
Khi đó S = 11 + T/15 = 11 + 15/5 = 14
Hay nói cách khác, tổng các số trên mỗi cạnh nhỏ nhất bằng 14 khi đặt các số 1, 2, 3, 4, 5 trên các đỉnh của ngũ giác. Dưới đây là một phương án thỏa mãn điều kiện này.
19482105736
Giả sử có phương án sắp xếp các số từ 1 đến 10 vào các đỉnh và các cạnh của ngũ giác sao cho tổng các số trên mỗi cạnh đều bằng nhau và bằng S.
Khi đó, ta lấy tổng tất cả 5 cạnh bằng 5.S và trong tổng này các số trên các cạnh được tính một lần, còn các số trên các đỉnh được tính hai lần. Ta gọi tổng các số trên 5 đỉnh là T, ta có:
5.S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + T
Hay là:
S = (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + T)/5 = 11 + T/5
Vậy để S nhỏ nhất có thể thì T cũng phải nhỏ nhất, mà tổng T có 5 số trong các số {1,2, ..., 10} nên T nhỏ nhất khi T = 1 + 2 + 3 + 4 + 5 = 15.
Khi đó S = 11 + T/15 = 11 + 15/5 = 14
Hay nói cách khác, tổng các số trên mỗi cạnh nhỏ nhất bằng 14 khi đặt các số 1, 2, 3, 4, 5 trên các đỉnh của ngũ giác. Dưới đây là một phương án thỏa mãn điều kiện này.
Sơn Tùng mà ko giải được bài này thì khỏi làm thần tượng
Đây gọi là Sơn Tùng ết
to khong biet nhung to biet oi biet do