Rút gọn: \(1+\frac{a+3}{a^2+5a+6}\div\left(\frac{8}{4a-8}-\frac{3a}{3a^2-12}-\frac{1}{a+2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{1}{a-1}\right]:\dfrac{2a}{3}\)
\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}\)
\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}=\dfrac{3}{2a}\)
a) \(ĐK:a\ne1;a\ne0\)
\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
b) Ta có: \(a^2+4\ge4a\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)
Khi đó \(\frac{4a}{a^2+4}\le1\)
Vậy MaxA = 1 khi x = 2
\(=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\left[\frac{\left(a+2-a\right)\left(a+2+a\right)}{4\left(a-1\right)\left(a+1\right)}-\frac{3}{a.\left(a-1\right)}\right]\) (Đk : x khác 0 ; 3 ; - 1 ; 1
\(=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\left[\frac{4\left(a+1\right)}{4\left(a-1\right)\left(a+1\right)}-\frac{3}{a\left(a-1\right)}\right]\)
\(=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\left[\frac{1}{a-1}-\frac{3}{a\left(a-1\right)}\right]\)
\(=\frac{\left(a+2\right)\left(a-1\right)}{a^n\left(a-3\right)}.\frac{a-3}{a\left(a-1\right)}=\frac{a+2}{a^{n+1}}\)
a/ đk: a\(\ne b\), b\(\ne0,a\ne-b\)
= \(\frac{a\left(a-b\right)-a^2-b^2}{a-b}.\frac{a+b+2b}{b\left(a+b\right)}\)
= \(\frac{a^2-ab-a^2-b^2}{a-b}.\frac{a+3b}{b\left(a+b\right)}\)
= \(\frac{-ab-b^2}{a-b}.\frac{a+3b}{b\left(a+b\right)}\)
= \(\frac{-b\left(a+b\right)\left(a+3b\right)}{b\left(a+b\right)\left(a-b\right)}\)
= \(\frac{-a-3b}{a-b}\)
b/ đk: a\(\ne0,a\ne\pm3\)
= \(\left[\frac{3a+1}{a\left(a-3\right)}+\frac{3a-1}{a\left(a+3\right)}\right].\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)
= \(\frac{\left(3a+1\right)\left(a+3\right)+\left(3a-1\right)\left(a-3\right)}{a\left(a-3\right)\left(a+3\right)}.\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)
= \(\frac{6a^2+6}{a\left(a-3\right)\left(a+3\right)}.\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)
= \(\frac{6\left(a^2+1\right)\left(a-3\right)\left(a+3\right)}{a\left(a^2+1\right)\left(a-3\right)\left(a+3\right)}\)
= \(\frac{6}{a}\)
a) \(ĐKXĐ:\hept{\begin{cases}a\ne1\\a\ne0\end{cases}}\)
\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right)\div\frac{a^3+4a}{4a^2}\)
\(\Leftrightarrow M=\left(\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right):\frac{a^2+4}{4a}\)
\(\Leftrightarrow M=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)
\(\Leftrightarrow M=\frac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a^2}{a^2+4}\)
\(\Leftrightarrow M=\frac{4a^2}{a^2+4}\)
b) Ta có : \(\frac{4a^2}{a^2+4}=\frac{4\left(a^2+4\right)-16}{a^2+4}\)
\(=4-\frac{16}{a^2+4}\)
Để M đạt giá trị lớn nhất
\(\Leftrightarrow\frac{16}{a^2+4}\)min
\(\Leftrightarrow a^2+4\)max
\(\Leftrightarrow a\)max
Vậy để M đạt giá trị lớn nhất thì a phải đạ giá trị lớn nhất.