Cho tam giác ABC cân tại A góc A < 90 độ kẻ BD vuông góc AC và CE vuông góc AB . Chứng minh
Tam giác ABD = tam giác ACE
K là giao của BD và CE . Chứng minh AK là phân giác của góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
=>ΔADB=ΔAEC
=>góc ABD=góc ACE
b: góc HBC+góc ABD=góc ABC
góc HCB+góc ACE=góc ACB
mà góc ABD=góc ACE; góc ABC=góc ACB
nên góc HBC=góc HCB
=>ΔBHC cân tại H
=>HB=HC>HD
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
BD=CE
Do đó: ΔABD=ΔACE
Xét ΔBEK vuông tại E và ΔCDK vuông tại D có
EB=DC
\(\widehat{EBK}=\widehat{DCK}\)
Do đó: ΔBEK=ΔCDK
c: Xét ΔBAK và ΔCAK có
BA=CA
AK chung
BK=CK
Do đó: ΔBAK=ΔCAK
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)
hay AK là tia phân giác của góc BAC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
AD=AE
=>ΔADI=ΔAEI
=>góc DAI=góc EAI
=>AI là phân giác của góc DAE
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
AD=AE
Do đó: ΔADI=ΔAEI
Suy ra: \(\widehat{DAI}=\widehat{EAI}\)
hay AI là tia phân giác của góc BAC
c: Xét ΔADE có AD=AE
nên ΔADE cân tại A
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
AD=AE
Do đó: ΔADI=ΔAEI
Suy ra: \(\widehat{DAI}=\widehat{EAI}\)
hay AI là tia phân giác của góc BAC
c: Xét ΔADE có AD=AE
nên ΔADE cân tại A
Xét T.giác ABD và T.giác ACE có:
AB=AC (tam giác ABC cân)
góc A: góc chung
AE=AD
Do đó: t.giác ABD = t.giác ACE ( c-g-c)