Chứng tỏ rằng A<1 biết
A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{2010^2}+\frac{1}{2011^2}+\frac{1}{2012^2}<1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Ta thấy:
$3+3^2+3^3+...+3^{99}\vdots 3$
$1\not\vdots 3$
$\Rightarrow A=1+3+3^2+...+3^{99}\not\vdots 3$
$\Rightarrow A\not\vdots 9$
b.
$A=(5+5^2)+(5^3+5^4)+...+(5^{39}+5^{40})$
$=5(1+5)+5^3(1+5)+...+5^{39}(1+5)$
$=5.6+5^3.6+....+5^{39}.6$
$=6(5+5^3+...+5^{39})$
$=2.3.(5+5^3+...+5^{39})$
$\Rightarrow A\vdots 2$ và $A\vdots 3$
ab=10.a+b
ba=10.b+a
ab+ba=11.a-11.b=11.(a-b)=> ab+ba chia hết cho 11
cái đầu thiếu đề (không có dữ liệu chính)
Ta có: ab + ba = (10a.1b) + (10b.1a)
=> (1b+10b).(1a+10a)
= 11b + 11a
= 11.2.ab chia hết cho 11
=> đpcm
1)
+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)
+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)
+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2
Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3
=>p+8 là hợp số (trái với giả thiết )
Vậy p phải có dạng là 3k+2
Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3
=>p+4 là hợp số (đpcm)
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13