Cho x,y là hai số dương thỏa mãn \(xy=1\). Tìm GTLN của biểu thức \(M=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM-GM ta có
\(x^4+y^2\ge2x^2y\)
\(x^2+y^4\ge2xy^2\)
\(\Rightarrow M\le\frac{x}{2x^2y}+\frac{y}{2xy^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)
Dấu "=" xảy ra khi \(x=y=1\)
Vậy..........
Cho x,y là hai số dương thay đổi thỏa mãn xy=1, tìm gtln của \(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
với x,y dương, áp dụng bđt cosi ta có:
\(x^4+y^2\ge2\sqrt{x^4.y^2}=2x.xy=2x\left(xy=1\right)\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{2x}=\frac{1}{2}\)
tương tự thì: \(\frac{y}{x^2+y^4}\le\frac{1}{2}\)
=> (gọi là A đi ): \(A\le\frac{1}{2}+\frac{1}{2}=1\Leftrightarrow x=y=1\)
\(P\le\frac{x}{2\sqrt{x^4.y^2}}+\frac{y}{2\sqrt{x^2.y^4}}=\frac{x}{2x^2y}+\frac{y}{2xy^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)
Dấu "=" xảy ra khi x=y=1
\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(xy+yz+zx\right)^2}{6x^2y^2z^2}\le\frac{\left(x^2+y^2+z^2\right)^2}{6x^2y^2z^2}=\frac{3}{2}\)
dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)
mình nhầm :) làm lại nhé
\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{6xyz}\le\frac{xy+yz+zx}{2xyz}\le\frac{x^2+y^2+z^2}{2xyz}=\frac{3}{2}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{1}{2xy}\\ =\frac{1}{4}+\frac{1}{2xy}\ge\frac{1}{4}+\frac{1}{8}=\frac{3}{8}\)
Dấu = xảy ra khi x=y=2
Từ giả thiết \(=>x+y=2xy\)
Áp dụng bđt Cô-si ta có :
\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y\)
\(y^4+x^2\ge2\sqrt{y^4x^2}=2y^2x\)
Khi đó : \(C\le\frac{1}{2}\left[\frac{1}{xy\left(x+y\right)}+\frac{1}{xy\left(x+y\right)}\right]=\frac{1}{2}.\frac{2}{xy\left(x+y\right)}=\frac{1}{xy\left(x+y\right)}\)
đến đây dễ rồi ha
oke làm tiếp
Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}< =>2\ge\frac{4}{x+y}< =>x+y\ge2\)
Mặt khác \(C\le\frac{1}{xy\left(x+y\right)}=\frac{1}{\frac{\left(x+y\right)}{2}.\left(x+y\right)}=\frac{2}{\left(x+y\right)^2}\le\frac{1}{2}\)
Vậy GTLN của C = 1/2 đạt được khi x=y=1
\(xy+yz+zx=4xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
Ta có \(M=\frac{1}{4\left(x+y\right)}+\frac{1}{4\left(y+z\right)}+\frac{1}{4\left(z+x\right)}\)
\(=\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)\)
\(=\frac{1}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}.4=\frac{1}{2}\)
Dấu "=" tại x = y = z = 3/4
Cho \(xy=1\)và \(x,y>0\)
Tìm \(M_{max}=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
\(M=\frac{x}{x^4+\frac{1}{x^2}}+\frac{x}{y^2+\frac{1}{y^2}}\)
\(M=\frac{x^4}{x^6+1}+\frac{y^3}{y^6+1}\)
Áp dụng BĐT Cauchy
\(x^6+1\ge2x^3=>\frac{x^2}{x^6+1}\le\frac{1}{2}\)
Tương tự \(\frac{y^3}{y^6+1}\le\frac{1}{2}\)
\(=>M\le1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}xy=1\\x=1\\y=1\end{cases}}\Leftrightarrow x=y=1\)
Vậy \(M_{max}=1\)khi \(x=y=1\)