cho a,b,c,d là các số nguyên dương. Chứng tỏ S không phải là số tự nhiên: S=(a/a+b+c )+(b/b+c+d) +(c/c+d+a)+(d/d+a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a,b,c,d là các số nguyên dương ta luôn có :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự : \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
Cộng vế với vế ta được :
\(\frac{a+b+c+d}{a+b+c+d}< S< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}\rightarrow1< S< 2\)
Do đó , S không là số tự nhiên.
Ta có:
\(\frac{a+d}{a+b+c+d}>\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b+a}{a+b+c+d}>\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c+b}{a+b+c+d}>\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d+c}{a+b+c+d}>\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
\(\Rightarrow\)\(\frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+b}{a+b+c+d}+\frac{d+c}{a+b+c+d}\)\(>S>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(\Rightarrow2>S>1\)
Vậy S không là số tự nhiên
1 và 2 đều dùng chung một cách giải .
Tổng của các phân số có tử số là một luôn là một phân số bé hơn một .
Vậy chúng đều không phải số tự nhiên .
Nguyễn Ngọc Đạt F12 ns vậy cũng nói, tổng các số bé hơn 1 là bé hơn 1 ak ??? 0.5<1 ; 0.75 , 1 mà 0.5 + 0.75 >1 đó
ta có bất đẳng thức sau :
\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)
tương tự ta sẽ có
\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(1
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath