Cho hình chóp tam giác S.ABC. Gọi M, N lần lượt là trung điểm của AC, BC và G là trọng tâm tam giác (ABD).
a) Tìm giao tuyến giữa PN và (BDI) với I là trung điểm của NC.
b) TÌm thiết diện hình chóp cắt bởi (CMP)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ko chắc sẽ đúng
a)* Trên mp ABCD kéo dài MN và AB sao cho MN cắt AB = { I }
Xét mp (SMN) và (SAB) có:
S là điểm chung (1)
I là điểm chung (2)
=> (SMN) n (SAB) = { SI }
* Vì I thuộc mp ABCD (cmt)
G là trọng tâm tam giác SAB
Xét mp (GMN) và (SAB) có:
G và I là điểm chung
=> (GMN) n (SAB) = {GI}
Do IJ là đường thẳng trung bình của hình thang ABCD nên IJ // AB. Hai mặt phẳng (GIJ) và (SAB) lần lượt chứa hai đường thẳng song song nên giao tuyến của chúng là đường thẳng đi qua G và song song với AB. Đường thẳng này cắt SA tại điểm M và cắt SB tại N. vậy thiết diện là hình thang MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.
Đáp án B.
+ Chọn mp (SAC) chứa PN .
Ta có: - (SAC) giao ( BID) = I .
* I ∈ SC ⊂ (SAC).
* I ∈ ( BID).
Trong mp ( ABCD) có : AC cắt BD tại O .
=> Giao tuyến là OI.
Cho OI cắt PN tại đâu thì đấy là giao điểm.
D là điểm nào?