Bài 4.Cho tam giác ABC cân tại A.Gọi D, E, H lần lượt là trung điểm của AB, AC và BC.
a) Tứ giác ADHE là hình gì?
b) Trên tia HE lấy điểm M sao cho HE = EM.Tứ giác AHCM là hình gì?
c) Gọi I là điểm đối xứng của H qua D. Chứng minh A là trung điểm của IM.
d) Tìm điều kiện của tam giác ABC để tứ giác ADHM là hình thang cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ABHM có
AM//BH
AM=BH
Do đó: ABHM là hình bình hành
Suy ra: B đối xứng M qua D
a: Xét ΔCBA có
H là trung điểm của BC
E là trung điểm của AC
Do đó: HE là đường trung bình của ΔCBA
Suy ra: HE//AB và \(HE=\dfrac{AB}{2}\)
hay HE//AD và HE=AD
Xét tứ giác ADHE có
HE//AD
HE=AD
Do đó: ADHE là hình bình hành
mà \(\widehat{EAD}=90^0\)
nên ADHE là hcn
a: Xét ΔABC có
F là trung điểm của AB
H là trung điểm của BC
Do đó: FH là đường trung bình của ΔABC
Suy ra: FH//AC
hay AFHC là hình thang
a, Vì D,E là trung điểm AB,AC nên DE là đtb tg ABC
Do đó DE//BC hay BDEC là hthang
b, Vì E là trung điểm AC và DM nên AMCD là hbh
c, Để AMCD là hcn thì \(\widehat{ADC}=90^0\) hay CD là đường cao tam giác ABC
Mà CD là trung tuyến tam giác ABC
Do đó để AMCD là hcn thì tam giác ABC cân tại C
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà BN=CM
nên BMNC là hình thang cân
a: Xét tứ giác ADHE có
HD//AE
HD=AE
Do đó: ADHE là hình bình hành
mà AD=AE
nên ADHE là hình thoi