Find K such that:
K - 2016 = \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017\times1+2016\times2+2015\times3+...+2\times2016+1\times2017}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1+(1+2)+(1+2+3)+...+(1+2+3+...+2017)=2017x1+2016x2+2015x3+...+2x2016+1x2017
=> K-2016=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017x1+2016x2+2015x3+...+2x2016+1x2017}\)=\(\frac{2017x1+2016x2+2015x3+...+2x2016+1x2017}{2017x1+2016x2+2015x3+...+2x2016+1x2017}=1\)
=> K=2016+1=2017
Toán tiếng anh hả bạn
Bài này thì bạn mình có thể giải được
Thank you
\(\frac{10^{2016}+2^3}{9}=\frac{10^{2016}-1}{9}+\frac{2^3+1}{9}=\left(1+10+10^2+...+10^{2015}\right)+1\in N.\)
* Xét tử số của K, ta nhận thấy:
Số 1 được lấy 2012 lần
Số 2 được lấy 2011 lần
Số 3 được lấy 2010 lần
........
Số 2011 được lấy 2 lần
Số 2012 được lấy 1 lần
Vậy tử số viết được thành: 2012x1+2011x2+2010x3+...+2x2011+1x2012
Nên \(K=1\)
\(=>\)\(K+2011=2012\)
Vậy \(K+2011=2012\)
Chắc chắn đúng nhé!!
Tử số bằng mẫu số
K-2016=1
K=2017
Muốn biết tại sao tử= mẫu thì tích nha
\(K-2016=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017\times1+2016\times2+2015\times3+...+2\times2016+1\times2017}\)
\(K-2016=\frac{1\times2017+2\times2016+3\times2015+...+2017\times1}{2017\times1+2016\times2+2015\times3+...+2017\times1}\)
\(K-2016=1\)
\(\Rightarrow K=1+2016\)
\(\Rightarrow K=2017\)