K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

undefined

15 tháng 12 2021

a) Vì ABCD là hình bình hành nên

AB=CD=2a, AD=BC=a

ta có: M,N là trung điểm của AB và CD

=> DN=1/2CD=a

=> AD=DN

Vậy tam giác ADN cân tại D(đpcm)

=> DAN=DNA

b) Ta có: AB//CD => AND=MAN(So le trong)

=> DAN=MAN

=>AN là tia phân giác của góc BAD

 

24 tháng 6 2018

24 tháng 10 2022

chép mạng :))

22 tháng 10 2019

toi ko bt

22 tháng 10 2019

https://drive.google.com/file/d/1F7_WT5J17JGrHKXFz0mns6lWgsUhJcNq/view

13 tháng 11 2017

A B M C N D P Q

a) Do AB = 2a, AD = A nên AB = 2AD.

Lại có ABCD là hình bình hành nên AB = CD. Vậy thì \(DN=\frac{CD}{2}=\frac{AB}{2}=AD\)

Xét tam giác ADN có DA = DN nên ADN là tam giác cân tại D.

Do tam giác ADN cân tại D nên \(\widehat{DAN}=\widehat{DNA}\) 

Do AB//DC nên \(\widehat{BAN}=\widehat{DNA}\) (Hai góc so le trong)

Vậy nên \(\widehat{DAN}=\widehat{BAN}\) hay AN là phân giác góc \(\widehat{BAD}\)

b) Ta có \(MB=\frac{1}{2}AB;DN=\frac{1}{2}DC\Rightarrow\) MB song song và bằng ND.

Xét tứ giác MDNB có MB song song và bằng ND hay MDNB là hình bình hành.

Vậy thì MD // NB

c) Tương tự câu b, ta chứng minh được AMCN là hình bình hành hay AN // MC

Xét tứ giác MPNQ có MP//QN và MQ//PN nên MPNQ là hình bình hành.

Xét tứ giác AMND có AM song song và bằng ND hay AMND là hình bình hành.

Lại có AD = AM nên AMND là hình thoi. Suy ra AN vuông góc DM hay \(\widehat{MPN}=90^o\) .

Xét hình bình hành MPNQ có \(\widehat{MPN}=90^o\) nên MPNQ là hình chữ nhật.

a) Xét tứ giác AMND có 

AM//DN

AM=DN

Do đó: AMND là hình bình hành

Suy ra: AD=NM

b) Xét tứ giác BCNM có 

BM//CN

BM=CN

Do đó: BCNM là hình bình hành