Cho ps A= n+1/n-3 (n thuộc Z; n khác 3)
a Tìm n để A có giá trị nguyên
b, Tìm n để A là ps tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ nghĩ là cộng vì dấu ''+'' nằm dưới dấu ''='' mà, chắc là quên ấn nút ''Shift'' ấy mà!
gọi d \(\in\)ƯC(n+2,n+3)
=>\(\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Rightarrow1⋮d\)=>d=1;-1
=>n+2/n+3 là p/số tối giản
vậy...
a ; Để A có giá trị nguyên thì:
n-5:n+7
(n-5)-(n+7):n+7
-12:n+7
a, \(A=\frac{n+1-6}{n+1}=1-\frac{6}{n+1}\)
A có giá trị nguyên \(\Leftrightarrow n+1\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
b, A tối giản \(\Leftrightarrow(n+1;n+5)\Leftrightarrow(n+1;6)=1\)
\(\Leftrightarrow(n+1)\)không chia hết cho 2 và \((n+1)\)không chia hết cho 3
\(\Leftrightarrow n\ne2k-1\)và \(n\ne3k-1(k\inℤ)\)
P/S : Hoq chắc :>
1. a, \(A=\left(-a+b-c\right)-\left(-a-b-c\right)\)
\(A=-a+b-c+a+b+c\)
\(A=\left(-a+a\right)+\left(b+b\right)+\left(-c+c\right)\)
\(A=0+2b+0\)
\(A=2b\)
b, Thay \(a=1;b=-1;c=2\) ta có:
\(A=\left(-1+1-2\right)+\left(1+1-2\right)\)
\(A=-2+0=-2\)
Bài 3:
a: \(=\dfrac{3}{7}\cdot\dfrac{13}{8}-\dfrac{3}{7}\cdot\dfrac{7}{9}-\dfrac{13}{8}\cdot\dfrac{3}{7}+\dfrac{13}{8}\cdot\dfrac{8}{39}\)
\(=-\dfrac{1}{3}+\dfrac{1}{3}=0\)
b: \(=\dfrac{1989\left(1990+2\right)}{1992\left(1991-2\right)}=1\)