K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH và ΔACH có 

AB=AC
AH chung

BH=CH

Do đó: ΔABH=ΔACH

Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường phân giác

b: Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường cao

c: Xét tứ giác AHCD có 

M là trung điểm của AC

M là trung điểm của HD

Do đó: AHCD là hình bình hành

Suy ra: AD//HC

hay AD//BC

21 tháng 12 2021

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

HB=HC

Do đó: ΔABH=ΔACH

a Xét ΔAHB và ΔAHC có

AB=AC

AH chung

HB=HC

=>ΔAHB=ΔAHC

b: Xét ΔAHB vuông tại H và ΔMHC vuông tại H có

HA=HM

HB=HC

=>ΔAHB=ΔMHC

=>góc HAB=góc HMC

=>AB//MC và AB=MC=AC

=>ΔMCA cân tại C

15 tháng 4 2023

câu c đâu bạn

 

31 tháng 12 2021

a: Xét ΔAHB và ΔAHC có 

AH chung

HB=HC

AB=AC

Do đó: ΔAHB=ΔAHC

1 tháng 3 2020

a,Ta có:
 \(AH\perp BC\) nên \(\widehat{AHB}\) +90 độ.
Vì M là tia đối của HA nên \(\widehat{MHB}\)= 90 độ.
Xét \(\Delta ABH\) và \(\Delta MBH\)có
AH = MH (gt)
\(\widehat{AHB}\) = \(\widehat{MHB}\) (= 90 độ )
BH : cạnh chung

\(\Rightarrow\Delta ABH=\Delta MBH\)( c.g.c )

b,Xét \(\Delta AHCv\text{à}\Delta MHC\)Ta có:

AH = HM (gt)

\(\widehat{AHC}\)\(\widehat{MHC}\)(= 90 độ)

HC : cạnh chung

\(\Rightarrow\Delta AHC=\Delta MHC\)( c.g.c)

\(\Rightarrow\)AC=CM ( t/ứ)

Mà AC = CN (gt) và CM = AC (cmt)

nên CM = CN

\(\Rightarrow\Delta CMN\)cân 

24 tháng 12 2021

Đề sai rồi bạn

a: Xét ΔAHB và ΔAHC có

AH chung

HB=HC

AB=AC

=>ΔAHB=ΔAHC

b: Xét ΔAHB vuông tại H và ΔMHC vuông tại H có

HA=HM

HB=HC

=>ΔAHB=ΔMHC

=>góc HAB=góc HMC

=>AB//MC

19 tháng 4 2023

còn câu c thì sao

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Suy ra: BH=CH

hay H là trung điểm của BC

b: Xét ΔABH vuông tại H và ΔDCH vuông tại H có

HB=HC

HA=HD

Do đó: ΔABH=ΔDCH

c: Ta có: ΔABH=ΔDCH

nên AB=DC

mà AB=AC

nên DC=AC

hay ΔACD cân tại C

a: Xét ΔAHB và ΔAHC có 

AH chung

HB=HC

AB=AC

Do đó: ΔAHB=ΔAHC

b: Xét tứ giác ABMC có 

H là trung điểm của AM

H là trung điểm của BC

Do đó: ABMC là hình bình hành

Suy ra: AB//MC