Lập hệ phương trình:
Quãng đường từ A đến B dài 90km. Một
người đi xe máy từ A đến B, khi đến B người đó
nghỉ 30 phút rồi quay trở về A với vận tốc lớn hơn
vận tốc lúc đi là 9km/h. Thời gian để từ lúc bắt đầu
đi từ A đến lúc trở về A là 5 giờ. Tính vận tốc của
xe máy đi từ A đến B?
\(30p=\dfrac{1}{2}h\)
Gọi vận tốc xe máy lúc đi từ \(A\) đến \(B\) là \(x\) ( \(km\)/\(h;x>0\) )
\(\Rightarrow\) Vận tốc xe máy lúc đi từ \(B\) về \(A\) là : \(x+9\) ( \(km\)/ \(h\) )
Tgian xe máy đi từ \(A\) đến \(B\) là : \(\dfrac{90}{x}\left(giờ\right)\)
Tgian xe máy đi từ \(B\) về \(A\) : \(\dfrac{90}{x+9}\left(giờ\right)\)
Theo đề bài, ta có :
\(\dfrac{90}{x}+\dfrac{90}{x+9}+\dfrac{1}{2}=5\)
\(\Leftrightarrow\dfrac{90}{x}+\dfrac{90}{x+9}=\dfrac{9}{2}\\ \Leftrightarrow\dfrac{90\left(x+9\right)}{x\left(x+9\right)}+\dfrac{90x}{x\left(x+9\right)}=\dfrac{9}{2}\)
\(\Leftrightarrow\dfrac{90x+810+90x}{x\left(x+9\right)}=\dfrac{9}{2}\\ \Leftrightarrow\dfrac{180x+810}{x\left(x+9\right)}=\dfrac{9}{2}\\ \Rightarrow2\left(180x+810\right)=9x\left(x+9\right)\)
\(\Leftrightarrow360x+1620=9x^2+81x\\ \Leftrightarrow9x^2+81x-360x-1620=0\\ \Leftrightarrow9x^2-279x-1620=0\\ \Leftrightarrow9\left(x^2-31x-180\right)=0\)
\(\Leftrightarrow x^2-31x-180=0\\ \Leftrightarrow\left[{}\begin{matrix}x=36\left(tm\right)\\x=-5\left(ktm\right)\end{matrix}\right.\)
Vậy : Vận tốc xe máy lúc đi từ \(A\) đến \(B\) là : \(36km\)/\(h\)