Cho A = (n2 + 1 ).(n2 +4)
chứng minh A chia hết cho 5 với mọi n thuộc N
Tìm điều kiện n để A chia hết cho 120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phân tích 15 n + 15 n + 2 = 113.2. 15 n .
b) Phân tích n 4 – n 2 = n 2 (n - 1)(n +1).
\(a,A=\dfrac{\left(119+1\right)\left(119-1+1\right)}{2}=\dfrac{120\cdot119}{2}=60\cdot\dfrac{119}{2}⋮5\\ b,n^2+n+1=n\left(n+1\right)+1\)
Vì \(n\left(n+1\right)\) là tích 2 số tự nhiên lt nên \(n\left(n+1\right)\) chẵn
Do đó \(n\left(n+1\right)+1\) lẻ
Vậy \(n^2+n+1⋮̸4\)
4. x + 16 chia hết cho x + 1
Ta có
x + 16 = ( x + 1 ) + 15
Mà x + 1 chia hết cho 1
=> 15 phải chia hết cho x + 1
=> x + 1 thuộc Ư(15)
Ư(15) = { 1 ; 15 ; 3 ; 5 }
TH1 : x + 1 = 1 => x = 1 - 1 = 0
TH2 : x + 1 = 15 => x = 15 - 1 = 14
TH3 : x + 1 = 3 => x = 3 - 1 = 2
TH4 : x + 1 = 5 => x = 5 - 1 = 4
Vậy x = 0 ; 14 ; 4 ; 2
1
a . Để A chia hết cho 9 thì các số hạng của nó phải chia hết cho 9
Mà 963 , 2439 , 361 chia hết cho 9
=> x cũng phải chia hết cho 9
Vậy điều kiện để A chia hết cho 9 là x chia hết cho 9
Và ngược lại để A ko chia hết cho 9 thì x không chia hết cho 9
b. Tương tự phần trên nha
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
a)A chia hết cho 9 khi x chia hết cho 9
A không chia hết cho 9 khi x không chia hết cho 9
b)B chia hết cho 5 khi x chia hết cho 5
B không chia hết cho 5 khi x không chia hết cho 5
Bài giải
a) Ta có: A = "tự ghi" (x thuộc N)
Mà 963 \(⋮\)9, 2493 \(⋮\)9, 351 \(⋮\)9
Suy ra x \(⋮\)9 thì A \(⋮\)9
x không chia hết cho 9 thì A không chia hết cho 9
b) Ta có B = "tự ghi" (x thuộc N)
Mà 10 \(⋮\)5, 25 \(⋮\)5, 45 \(⋮\)5
Suy ra x \(⋮\)5 thì B \(⋮\)5
x không chia hết cho 5 thì A không chia hết cho 5