cho tam giác ABC(góc A =90 độ) có AB = 5cm, AC 12cm. Xác định tâm bán kính đường tròn ngoại tiếp tam giác ABC
giải giúp mk với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://mathx.vn/uploads/ho-tro-hoc-tap/vip/images/Screenshot_38.png
a) Vẽ đường trung trực A H của cạnh B C . Qua trung điểm I của cạnh A B vẽ trung trực cạnh A B cắt A H tại O chính là tâm đường tròn ngoại tiếp của tam giác A B C Theo định lý pi ta go: A H 2 = A B 2 − B H 2 = 5 2 − 3 2 = 16 => A H = 4 Tam giác vuông A O I đồng dạng tam giác vuông A B H (chung góc A ) nên: A O A I = A B A H => R = A O = A B . A I A H = 5.2 , 5 4 = 3 , 125 b) Vì B D là đk nên tam giác A B D vuông A B D = 2 R = 6 , 26 . Theo Py ta go: A D 2 = B D 2 − A B 2 = 6 , 25 2 − 5 2 = 14 , 0625 => A D = 3 , 75 Tương tự tam giác C B D vuông C C D 2 = B D 2 − B C 2 = 6 , 25 2 − 6 2 = 3 , 0625 => C D = 1 , 75
Tâm đường tròn ngoại tiếp tam giác ABC nằm trên trung điểm BC
=> Tâm đường tròn là điểm M
a, tam giác ABC vuông tại B có góc A = 30 độ => AC = 2 BC = 2. 3 = 6 cm
theo định lí Pytago ta có AB = \(\sqrt{ÃC^2-BC^2}=\sqrt{6^2-3^2}\) = \(3\sqrt{3}\) cm
góc C = 90 - 30 = 60 độ
b, tam giác ABH vuông tại H có góc A = 30 độ => AB = 2 BH => BH = \(\frac{3\sqrt{3}}{2}\)cm
theo định lí Pytago ta có AH = \(\sqrt{AB^2-BH^2}=\sqrt{\left(3\sqrt{3}\right)^2-\left(\frac{3\sqrt{3}}{2}\right)^2}=4,5cm\)
diện tích tam giác ABH =\(\frac{1}{2}.BH.AH=\frac{1}{2}.\frac{3\sqrt{3}}{2}.4,5=\frac{27\sqrt{3}}{8}\)cm vuông
Gọi O là trung điểm BC
Ta có: Tam giác ABC vuông tại A nên đường tròn ngoại tiếp tam giác ABC có cạnh huyền BC là đường kính và O là tâm đường tròn
=> Bán kính là OA,OB,OC
Áp dụng Pitago: \(BC=\sqrt{AB^2+AC^2}=13\)
Do tam giác ABC vuông tại A \(\Rightarrow BC\) là đường kính
\(\Rightarrow R=\dfrac{1}{2}BC=\dfrac{13}{2}=6,5\left(cm\right)\)
cảm ơn nhiều ạ