tìm số tự nhiên có 2 chữ số biết rằng hai ần chữ số hàng đơn vị lớn hơn chữ số hàng chục 1 đơn vị. nếu viết 2 chữ số ấy theo thứ tự ngược nhau thì được 1 số mới bé hơn số cũ 27 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là \(\overline{xy}=10x+y\) (\(x;y\in N,0< x< 10,0\le y\le9\))
Từ dữ kiện đầu tiên: \(2y-x=1\)
Từ dữ kiện thứ 2: \(10x+y-\left(10y+x\right)=27\)
\(\Leftrightarrow x-y=3\)
Ta được hệ: \(\left\{{}\begin{matrix}2y-x=1\\x-y=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=4\\x=7\end{matrix}\right.\)
Số đó là 74
Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))
Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)
Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)
\(\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow-9a+9b=36\)
\(\Leftrightarrow a-b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 59
Gọi số cần tìm là \(\overline{ab}\)
Theo đề bài
\(\overline{ab}-\overline{ba}=10.a+b-10.b-a=9.a-9.b=36\Rightarrow a-b=4\) (1)
Theo đề bài
\(3.a-b=16\) (2)
Từ (1) và (2) ta có hệ phương trình
\(\hept{\begin{cases}a-b=4\\3a-b=16\end{cases}\Rightarrow\hept{\begin{cases}a=6\\b=2\end{cases}}}\)
Gọi chữ số hàng chục là x \(\left(0< x\le9\right)\)
chữ số hàng dơn vị là y \(\left(0\le y\le9\right)\)
Ta có ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 13 đơn vị
\(\Rightarrow3x-y=13\left(1\right)\)
Nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) nhỏ hơn số cũ 9 đơn vị.
\(\Rightarrow xy-yx=9\Leftrightarrow10x+y-10y-x=9\)
\(\Leftrightarrow9x-9y=9\)
\(\Leftrightarrow x-y=1\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}3x-y=13\\x-y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=12\\x-y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6\left(TM\right)\\y=5\left(TM\right)\end{cases}}\)
Vậy số cần tìm là \(65\)
Học tốt
Gọi số cần tìm là \(\overline{ab}\)
Vì 5 lần chữ số hằng chục lớn hơn chữ số hàng đon vị là 27
Khi đó ta có : 5a - b = 27
Vì Nếu viết ngược lại thì được số mới nhỏ hơn số cũa 27 đv
=> \(\overline{ab}-\overline{ba}=27\)
\(\Leftrightarrow10a+b-10b-a=27\)
\(\Leftrightarrow9a-9b=27\)
\(\Leftrightarrow a-b=3\)
Ta có hệ phương trình
\(\hept{\begin{cases}a-b=3\\5a-b=27\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)
Vậy số cần tìm là 63
Gọi số cần tìm là \(\overline{ab}\), (\(0< a\le9;0\le b\le9;a,b\in N\)
Ta có: 2b=a+1 và \(\overline{ab}\)-\(\overline{ba}\)=27\(\Rightarrow10a-b-10b-a=27\\ 9\left(a-b\right)=27\\ a-b=3\\ a+1-b=4\\ 2b-b=4\\ b=4\)
a=2.4-1=7
vậy số cần tìm là 74
gọi số cần tìm là \(\overline{xy}\)
ta có hệ
\(\hept{\begin{cases}5x-y=12\\\left(10y+x\right)-\left(10x+y\right)=36\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5x-y=12\\-9x+9y=36\end{cases}=>\hept{\begin{cases}45x-9y=108\\-45x+45y=180\end{cases}=>\hept{\begin{cases}36y=288\\5x-y=12\end{cases}=>\hept{\begin{cases}y=8\\5x=20\end{cases}}}}}\)
\(\Rightarrow\hept{\begin{cases}y=8\\x=4\end{cases}}\)
zậy số cần tìm là 48
Gọi chữ số hàng chục là x ( \(x\inℕ^∗\), \(4\le x\le9\))
Chữ số hàng đơn vị là: \(2x-7\)
Số tự nhiên ban đầu có dạng: \(10x+\left(2x-7\right)\)
Số tự nhiên ban đầu viết theo thứ tự ngược lại có dạng: \(10.\left(2x-7\right)+x\)
Nếu viết 2 chữ số ấy theo thứ tự ngược lại thì số mới nhỏ hơn số cũ 27 đơn vị nên ta có phương trình:
\(10.\left(2x-7\right)+x+27=10x+\left(2x-7\right)\)
\(\Leftrightarrow20x-70+x+27=10x+2x-7\)
\(\Leftrightarrow20x+x-10x-2x=-7+70-27\)
\(\Leftrightarrow9x=36\)\(\Leftrightarrow x=4\)( thoả mãn ĐK )
Vậy chữ số cần tìm là: \(41\)