K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

\(\Leftrightarrow\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{a^2b^2c^2}=64\)(*)

Ta có :\(\left(a+b\right)^2\ge4ab\) ; \(\left(b+c\right)^2\ge4bc\) ; \(\left(c+a\right)^2\ge4ca\)

Suy ra vế trái của (*) lớn hơn hoặc = 64. Dấu đẳng thức xảy ra khi a = b = c. Khi đó tg ABC đều.

13 tháng 8 2017

chưngs minh tam giác abc đều mà sao lại nói tam giác abc ko đều

6 tháng 11 2018

Câu hỏi của Phạm Thị Hường - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài làm ở link này nhé!

11 tháng 1 2016

Mấy bài này mình đã làm rồi. 

20 tháng 12 2016

a^2+b^2+c^2=ab+bc+ac

=>2a^2+2b^2+2c^2=2ab+2bc+2ac

<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0

<=>(a-b)^2+(b-c)^2+(c-a)^2=0

=>a-b=b-c=c-a=0

=>a=b;b=c;c=a

=>a=b=c

=>tam giác abc là tam giác đều

22 tháng 8 2015

CM bất đảng thức :

 \(a+b\ge2\sqrt{ab}\)

XH : a + b -  2\(\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )

Áp dụng BĐT : ... 

Đặt b+c-a=2x; c+a-b=2y; a+b-c=2z

hay \(a=y+z;b=x+z;c=x+y\) và \(\left\{{}\begin{matrix}x=\dfrac{b+c-a}{2}\\y=\dfrac{c+a-b}{2}\\z=\dfrac{a+b-c}{2}\end{matrix}\right.\)

Áp dụng BĐT Cosi, ta được: 

\(\left\{{}\begin{matrix}x+y\ge2\sqrt{xy}\\y+z\ge2\sqrt{yz}\\x+z\ge2\sqrt{xz}\end{matrix}\right.\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)

\(\Leftrightarrow abc\ge8\cdot\dfrac{b+c-a}{2}\cdot\dfrac{c+a-b}{2}\cdot\dfrac{a+b-c}{2}\)

\(\Leftrightarrow abc\ge\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\)

\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)(đpcm)

17 tháng 1 2021

Ta có: \(\left(b+c-a\right)\left(c+a-b\right)=c^2-\left(a-b\right)^2\le c^2\);

\(\left(c+a-b\right)\left(a+b-c\right)=a^2-\left(b-c\right)^2\le a^2\);

\(\left(a+b-c\right)\left(b+c-a\right)=b^2-\left(c-a\right)^2\le b^2\).

Nhân vế với vế của các bđt trên với chú ý a + b - c > 0; b + c - a > 0; c + a - b > 0 ta có:

\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)

\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\).

Đẳng thức xảy ra khi và chỉ khi a = b = c.

Mở rộng: Nếu a, b, c là các số thực không âm thì bđt đó vẫn đúng.

NV
23 tháng 7 2021

a;b;c ;à độ dài 3 cạnh của tam giác \(\Rightarrow a;b;c>0\)

Ta có:

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (do \(a+b+c>0\))

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Hay tam giác ABC đều

30 tháng 8 2016

Bằng nhau

30 tháng 8 2016

a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .