K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2021

Ta có \(\frac{d\left(A,\left(SCD\right)\right)}{d\left(M,\left(SCD\right)\right)}=2\Rightarrow d=\left(m,\left(SCD\right)\right)=\frac{1}{2}d\left(A,\left(SCD\right)\right)\)

Dễ thấy AC _|_ CD, SA _|_ CD dựng AH _|_ SA => AH _|_ (SCD)

Vậy d(A,(SCD))=AH

Xét tam giác vuông SAC (A=1v) có \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AS^2}\Rightarrow AH=\frac{a\sqrt{6}}{3}\)

Vậy suy ra \(d\left(M,\left(SCD\right)\right)=\frac{a\sqrt{6}}{3}\)

E=AB∩CD,G=EN∩SB⇒G là trọng tâm tam giác SAE.

d(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14h 

Tứ diện AEND vuông tại đỉnh A nên 1h2=1AN2+1AE2+1AD2=116a2⇒h=a6611 

Vậy d(M,(NCD))=a6644. 

7 tháng 12 2017

Đáp án C

Theo dữ kiện đề bài cho, dễ dàng chứng minh được ΔACD vuông tại cân C và A C = A D 2 = a 2 .

C D ⊥ A C C D ⊥ S A ⇒ C D ⊥ S A C ⇒ S A C ⊥ S C D

Mà S A C ∩ S C D = S C , từ A kẻ A H ⊥ S C . Khi đó d A ; S C D = A H .

Tam giác SAC vuông tại

 A: 1 A H 2 = 1 S A 2 + 1 A C 2 = 1 a 2 + 1 2 a 2 = 3 2 a 2 ⇒ d A ; S C D = A H = a 2 3

Mặt khác: A D ∩ S C D = D  và M là trung điểm AD nên:

d M ; S C D d A ; S C D = M D A D = 1 2 ⇒ d M ; S C D = 1 2 d A ; S C D = a 6 6

5 tháng 6 2018

Đáp án B

13 tháng 6 2018

Chọn B

30 tháng 6 2017

13 tháng 4 2018

Đáp án A.

Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .  

Qua N kẻ đường thẳng song song với BC, cắt SC tại P.

Suy ra thiết diện của mặt phẳng α  và hình chóp là MNPQ.

Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .

MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a . 

NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 . 

Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .

4 tháng 1 2019

1: SA vuông góc (ABCD)

=>SA vuông góc AB

=>ΔSAB vuông tại A

SA vuông góc (ABCD)

=>SA vuông góc AD

=>ΔSAD vuông tại A

4: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=1/2

=>góc SDA=27 độ

(SC;(ABCD))=(CS;CA)=góc SCA

AC=căn a^2+a^2=a*căn 2

tan SCA=SA/AC=1/căn 2
=>góc SCA=35 độ

11 tháng 1 2017

Chọn A.

Xác định được

Vì M là trung điểm SA nên 

Kẻ AK  ⊥ DM và chứng minh được AK  (CDM) nên 

Trong tam giác vuông MAD tính được 

16 tháng 11 2018

Xác định được 

Vì M là trung điểm SA nên

Kẻ  và chứng minh được  nên 

Trong ∆  vuông MAD tính được 

Chọn A.