K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình của ΔAHB

Suy ra: MN//DP và MN=DP

hay DMNP là hình bình hành

30 tháng 11 2021

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình của ΔHAB

Suy ra: MN//AB

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành

10 tháng 1 2022

a) Xét tam giác AHB có:

M,N lần lượt là trung điểm các đoạn thẳng AH,BH (gt).

\(\Rightarrow\) MN là đường trung bình.

\(\Rightarrow\) MN // AB (Tính chất đường trung bình trong tam giác).

b) Xét tam giác AHB có: MN là đường trung bình (cmt).

\(\Rightarrow\) MN = \(\dfrac{1}{2}\) AB (Tính chất đường trung bình trong tam giác).

Mà AB = CD (ABCD là hình chữ nhật).

\(\Rightarrow\) MN = \(\dfrac{1}{2}\) AB = \(\dfrac{1}{2}\) CD.

Vì ABCD là hình chữ nhật (gt). \(\Rightarrow\) AB // CD (Tính chất hình chữ nhật).

Mà MN // AB (cmt).

\(\Rightarrow\) MN // AB // CD.

Xét tứ giác MNED:

+ MN // DE (MN // CD).

+ MN = DE (cùng = \(\dfrac{1}{2}\) CD).

\(\Rightarrow\) Tứ giác MNED là hình bình hành (dhnb).

12 tháng 10 2021

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Suy ra:AN//CM

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//PC và MN=PC

=>NCPM là hình bình hành

b; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MP

hay góc BMP=90 độ

b: Ta có: \(AE=ED=\dfrac{1}{2}AD\)

mà \(AB=BC=\dfrac{AD}{2}\)

nên AE=ED=AB=BC

Xét tứ giác AECB có 

AE//CB

AE=CB

Do đó: AECB là hình bình hành

mà \(\widehat{EAB}=90^0\)

nên AECB là hình chữ nhật

mà AE=AB

nên AECB là hình vuông

Xét ΔHAD có 

N là trung điểm của AH

M là trung điểm của HD

Do đó: MN là đường trung bình của ΔHAD

Suy ra: MN//AD và \(MN=\dfrac{AD}{2}\)

mà \(AE=BC=\dfrac{AD}{2}\) và AD//BC

nên MN//BC và MN=BC

Xét tứ giác BCMN có 

MN//BC

MN=BC

Do đó: BCMN là hình bình hành

21 tháng 5 2019

Đề bài: Cho hình chữ nhật ABCD có AH vuông góc với BD tại H Gọi M,N  lần lượt là trung điểm của BH và CD .Tính số đo góc AMN

Trả lời: B1 vẽ hình chữ nhật ABCD có AH vuông góc với BD tại H Gọi M,N  lần lượt là trung điểm của BH và CD

B2: Nhìn hình và tìm các làm -> ra.

21 tháng 5 2019

A B C D H M N K

gọi K là trung điểm AH.

\(\Delta AHB\)có MK là đường trung bình nên MK // AB ; MK = \(\frac{1}{2}AB\)

Mà \(AD\perp AB\)nên \(MK\perp AD\)

Xét \(\Delta AMD\)có \(MK\perp AD\)\(AH\perp MD\)nên K là trực tâm

\(\Rightarrow DK\perp AM\)

Mà DN = \(\frac{1}{2}CD\)

\(\Rightarrow MK=DN\)

tứ giác MKDN có MK = DN và MK // DN nên là hình bình hành

\(\Rightarrow\)DK // MN

\(\Rightarrow\)\(MN\perp AM\)

\(\Rightarrow\)\(\widehat{AMN}=90^o\)