Tìm số tự nhiên có 2 chữ số biết 2 lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 7. Nếu viết 2 chữ số ấy theo thứ tự ngược lại thì được số mới có 2 chữ số lớn hơn chữ số đã cho là 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chữ số hàng chục là x ( \(x\inℕ^∗\), \(4\le x\le9\))
Chữ số hàng đơn vị là: \(2x-7\)
Số tự nhiên ban đầu có dạng: \(10x+\left(2x-7\right)\)
Số tự nhiên ban đầu viết theo thứ tự ngược lại có dạng: \(10.\left(2x-7\right)+x\)
Nếu viết 2 chữ số ấy theo thứ tự ngược lại thì số mới nhỏ hơn số cũ 27 đơn vị nên ta có phương trình:
\(10.\left(2x-7\right)+x+27=10x+\left(2x-7\right)\)
\(\Leftrightarrow20x-70+x+27=10x+2x-7\)
\(\Leftrightarrow20x+x-10x-2x=-7+70-27\)
\(\Leftrightarrow9x=36\)\(\Leftrightarrow x=4\)( thoả mãn ĐK )
Vậy chữ số cần tìm là: \(41\)
Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))
Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)
Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)
\(\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow-9a+9b=36\)
\(\Leftrightarrow a-b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 59
gọi số cần tìm là \(\overline{xy}\)
ta có hệ
\(\hept{\begin{cases}5x-y=12\\\left(10y+x\right)-\left(10x+y\right)=36\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5x-y=12\\-9x+9y=36\end{cases}=>\hept{\begin{cases}45x-9y=108\\-45x+45y=180\end{cases}=>\hept{\begin{cases}36y=288\\5x-y=12\end{cases}=>\hept{\begin{cases}y=8\\5x=20\end{cases}}}}}\)
\(\Rightarrow\hept{\begin{cases}y=8\\x=4\end{cases}}\)
zậy số cần tìm là 48
Gọi số có 2 chữ số cần tìm là \(\overline{ab}\left(0< a< 10;0< b< 10\right)\)
Vì 2 lần chữ số hàng chục lớn hơn 3 lần chữ số đơn vị là 2
=> PT : 2a - 3b = 2 (1)
Lại có khi viết ngược lại số mới nhỏ hơn số ban đầu 18 đơn vị
=> PT : \(\overline{ab}-\overline{ba}=18\)
<=> a - b = 2 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}2a-3b=2\\a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(b+2\right)-3b=2\\a=b+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2\\a=4\end{matrix}\right.\)
Vậy số cần tìm là 42
Gọi số cần tìm là \(\overline{ab}\)
Vì 5 lần chữ số hằng chục lớn hơn chữ số hàng đon vị là 27
Khi đó ta có : 5a - b = 27
Vì Nếu viết ngược lại thì được số mới nhỏ hơn số cũa 27 đv
=> \(\overline{ab}-\overline{ba}=27\)
\(\Leftrightarrow10a+b-10b-a=27\)
\(\Leftrightarrow9a-9b=27\)
\(\Leftrightarrow a-b=3\)
Ta có hệ phương trình
\(\hept{\begin{cases}a-b=3\\5a-b=27\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=6\\b=3\end{cases}}\)
Vậy số cần tìm là 63
Gọi số tự nhiên cần tìm có dạng là \(\overrightarrow{ab}\left(ĐK:0< a< 10;0\le a< 10\right)\)
Vì 2 lần chữ số hàng chục lớn hơn hàng đơn vị 2 đơn vị nên ta có phương trình: 2a-b=2(1)
Vì khi viết ngược số đó thì ta được số mới lớn hơn số cũ 18 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=18\)
\(\Leftrightarrow10b+a-10a-b=18\)
\(\Leftrightarrow-9a+9b=18\)
hay a-b=-2(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}2a-b=2\\a-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=a+2=4+2=6\end{matrix}\right.\)
Vậy: Số cần tìm là 46