cho tam giác ABC vuông tại A .M là trung điểm của BC kẽ MD vuông góc AB,ME vuông góc AC
a)CM tứ giác ADME là hình chữ nhật
b)CM E là trung điểm của AC và tứ giác CMDE là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét ΔABC có ME//AB
nên CE/CA=CM/CB=1/2
=>E là trung điểm của AC
Xét ΔCAB có MD//AC
nên MD/AC=BD/BA=BM/BC=1/2
=>D là trung điểm của BA
=>MD//CE và MD=CE
=>MCED là hình bình hành
c: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>DE//HM
ΔHAC vuông tại H
mà HE là đường trung tuyến
nên HE=AC/2=MD
Xét tứ giác MHDE có
MH//DE
MD=HE
Do đó;MHDE là hình thang cân
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật.
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
a: Xét tứ giác ADME có \(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
nên ADME là hình chữ nhật
b: Xét ΔCAB có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác CEDM có
DM//CE
DM=CE
Do đó: CEDM là hình bình hành
c: Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến
nên HE=AC/2=MD
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔBAC có
E la trung điểm của AC
D là trung điểm của AB
Do đó: ED là đường trung bình
=>ED//BC
hay ED//MH
=>EMHD là hình thang
mà EH=MD
nên EMHD là hình thang cân
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
vì ABC là Δ vuông
=>góc BAC =90 độ
mà AB vuông góc vs AC
=> MD//AC
=> DM//EC
trong Δ ABC có :
DM//AC
M là trung điểm của BC
=>MD là đg trung bình của Δ ABC
=>MD=1/2 AC (1)
vì ADME là HCN
=>MD=AE (2)
từ (1) và (2)
=>1/2 AC=AE
=>E là trung điểm của AC
=>AE=EC
Mà AE=DM
=>DM=EC
trong tứ giác CMDE có :
- DM//EC
- DM=EC
=>CMDE là hình bình hành
mìk chỉ làm được câu b) thui nha
b) \(\Delta ABC\) vuông tại A, có AM là trung tuyến => AM = MB = MC.
=> Tam giác AMC cân tại M, có ME là đường cao.
=> ME là đường trung tuyến <=> CE = EA.
Vì ADME là hình chữ nhật => EA=MD ( T/c hình chữ nhật )
=> CE=MD (1)
MA=MB => Tam giác MAB cân tại M, có MD là đường cao
=> MD cũng là đường trung tuyến <=> AD=DB
- Xét tam giác ABC có CE=EA , AD=DB
=> ED là đường trung bình của tam giác ABC
<=> ED // BC , ED = \(\frac{1}{2}BC\) = MC = MB (2)
Từ (1) và (2) suy ra tứ giác CMDE là hình bình hành ( vì có các cặp cạnh đối bằng nhau )
a) Xét tứ giác ADEM có:
D= 90 độ (DM vuông góc với AB tại D(gt))
A= 90 độ ( Tam giác ABC vuông tại A(gt))
E= 90 độ ( ME vuông góc với AC tại E(gt))
=> Tứ giác ADME là hình chữ nhật
Tik nha
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó:D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
M là trung điểm của BC
D là trung điểm của AB
Do đó: MD là đường trung bình
=>MD//CE và MD=CE
hay CMDE là hình bình hành
a) Có MD⊥AB tại D ⇒MDA^=90, ME⊥AC tại E⇒MEA^=90
và DAE^=90 (vì △ABC vuông tại A)
⇒ Tứ giác MDAE là hình chữ nhật
b) Vì MDAE là hình chữ nhật( cmt)
⇒ME// DA ⇒ME// AB (D∈AB)
Xét △ABC có ME//AB, M là trung điểm BC ⇒E là trung điểm AC
c) Vì MDAE là hình chữ nhật ⇒ MD//AE ⇒MD// EC( E∈AC)
Xét △ABC có M là trung điểm BC, MD//AC (1)
⇒D là trung điểm AB ⇒ MD là đường trung binh
⇒MD=1/2AC=EC (Vì EC=1/2AC do E là trung điểm AC) (2)
Từ 1,2 ⇒ CMDE là hình bình hành