K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2016

a) Áp dụng BĐT côsi ta có:\(\frac{a}{b}+\frac{b}{a}>=2\cdot\sqrt[2]{\frac{a}{b}\cdot\frac{b}{a}}=2\)

b)bạn nhân hết ra rồi áp dụng BĐT cối là được!!!!

25 tháng 4 2016

bạn học bđt cô-si chưa bạn

chỉ cần dùng cô-si là ra

11 tháng 2 2022

1+1 bằng bao nhiêu

12 tháng 2 2022

1 C         

2  A 

3 B     

4 A   

5 B

17 tháng 6 2021

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

=> cd(a2 + b2) = ab(c2 + d2

=> a2cd + b2cd = abc2 + abd2

=>  a2cd + b2cd - abc2 - abd2 = 0

=>  (a2cd - abc2) + (b2cd - abd2) = 0

=> ac(ad - bc) + bd(bc - ad) = 0

=> ac(ad - bc) - bd(ad - bc) = 0

=> (ac - bd)(ad - bc) = 0

=> \(\orbr{\begin{cases}ac-bd=0\\ad-bc=0\end{cases}}\Rightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}\Rightarrow\text{đpcm}\)

30 tháng 6 2017

các bạn ơi làm hộ mình với

30 tháng 5 2019

Ta có 

\(\frac{a^2}{a+b^2}=\frac{a^2+ab^2-ab^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Khi đó 

\(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab+bc+ac\right)\)

Mà \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)

=> \(A\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)( ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

30 tháng 5 2019

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\)

Do \(a+b^2\ge2b\sqrt{a}\)

\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)

Do \(\sqrt{a}\le\frac{a+1}{2}\)