Cho p là số nguyên tố lớn hơn 5. CMR: p8.n+3.p4n - 4 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Gọi đó là p, q, r > 3 => p, q, r không chia hết cho 3.
=> theo nguyên lý Dirichlet trong 3 số p, q, r phải có ít nhất 2 số chia cho 3 cho cùng số dư.
Do 2d = 2(q - p) = 2(r - q) = r - p nên 2d chia hết cho 3 => d chia hết cho 3.
d = q - p cũng chia hết cho 2 do p, q đều lẻ
Vậy d chia hết cho 2*3 = 6
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
Ta có: p4-1=(p2)2-1=(p2-1).(p2+1)=(p-1).(p+1).(p2+1)
Vì p là số nguyên tố lớn hơn 5
=>p lẻ
=>p-1 và p+2 là 2 số chẵn liên tiếp
=>(p-1).(p+1) chia hết cho 8
Vì p lẻ=>p2 lẻ=>p2+1 chẵn=>p2+1 chia hết cho 2
=>(p-1).(p+1).(p2+1) chia hết cho 16
=>p4-1 chia hết cho 16(1)
Lại có: p là số nguyên tố lớn hơn 5
=>p không chia hết cho 3
=>p4 chia 3 dư 1
=>p2-1 chia hết cho 3(2)
Mặt khác: p là số nguyên tố lớn hơn 5
=>p có 4 dạng 5k+1,5k+1,5k+3,5k+4
-Với p=5k+1=>p-1 chia hết cho 5=>(p-1).(p+1).(p2)-1 chia hết cho 5
=>p4-1 chia hết cho 5
-Với p=5k+2=>p2+1=(5k+2)2-1=(5k)2+2.2.5k+22+1=5.5.k2+5.4.k+5 chia hết cho 5
=>(p-1).(p+1).(p2)-1 chia hết cho 5
=>p4-1 chia hết cho 5
-Với p=5k+3=>p2-1=(5k+3)2-1=(5k)2+2.3.5k+32+1=5.5.k2+5.6.k+10 chia hết cho 5
=>(p-1).(p+1).(p2)-1 chia hết cho 5
=>p4-1 chia hết cho 5
-Với p=5k+4=>p+1 chia hết cho 5=>(p-1).(p+1).(p2)-1 chia hết cho 5
=>p4-1 chia hết cho 5
=>p4-1 chia hết cho 5(3)
Tư (1),(2) và (3) ta thấy:
p4-1 chia hết cho 16,3,5
mà (16,3,5)=1
=>p4-1 chia hết cho 16.3.5
=>p4-1 chia hết cho 240
=>ĐPCM
câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3
=>16p(8p+1)(4p+1) chia het cho 3
mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3
Ta có : p8n+3p4n- 4 = (p4n)2+3p4n- 4
Vì p là số nguyên tố lớn hơn 5 nên p có tận cùng là chữ số 1;3;7 hoặc 9
+) Với p = (...1), ta có: p4n=(...1)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...3), ta có: p4n=(...3)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...7), ta có: p4n=(...7)4n=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
+) Với p = (...9), ta có: p4n=[(...9)2n]2=(...1)2=(...1)
=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)
=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5
Vậy p8n+3p4n- 4 chia hết cho 5 khi p là số nguyên tố lớn hơn 5