Cho tam giác ABC vuông tại A biết số đo góc B bằng 54 độ 26' AC = 12 cm .Tính số đo góc C và độ dài cạnh BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=12^2-6^2=108\)
hay \(AC=6\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{2}\)
\(\Leftrightarrow\widehat{C}=30^0\)
hay \(\widehat{B}=60^0\)
a) Xét tam giác ABC vuông tại A có:
\(\widehat{B}+\widehat{C}=90^0\Rightarrow\widehat{C}=90^0-\widehat{B}=90^0-60^0=30^0\)
b) Áp dụng tslg :
\(cosB=\dfrac{AB}{BC}\Rightarrow AB=10.cos60^0=5\left(cm\right)\)
a) Áp dụng HTL :
\(\left\{{}\begin{matrix}AH^2=BH.HC\Rightarrow AH=\sqrt{1,8.3,2}=2,4\left(cm\right)\\AB^2=BH.BC\Rightarrow AB=\sqrt{1,8\left(1,8+3,2\right)}=3\left(cm\right)\\AC^2=HC.BC\Rightarrow AC=\sqrt{3,2\left(1,8+3,2\right)}=4\left(cm\right)\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\Rightarrow\widehat{B}\approx53^0\\tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\widehat{C}\approx37^0\end{matrix}\right.\)
\(\widehat{C}=90^0-\widehat{B}=35^034'\\ BC=\dfrac{AC}{\sin B}=\dfrac{12}{\sin54^026'}\approx14,75\left(cm\right)\)