Cho x,y là các số nguyên . Chứng tỏ rằng nếu 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31 . Điều ngược lại có đúng không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xết số 6.( x + 7y ) = ( 6x + 11y ) +31y
Từ đẳng thức trên suy ra : nếu ( 6x + 11y ) chia hết cho 31 thì ( x + 7y ) chia hết cho 31 .
Điều ngược lại cũng đúng . ủng hộ mik nhé
6x+11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (vì 31y cũng chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Vì 6 và 31 nguyên tố cũng nhau nên x+7y buộc phải chia hết cho 31 (ĐPCM)
Vì 6x+11y chia hết cho 31 nên 5(6x+11y)=30x +55y chia hết cho 31
=>(30x+55y) + (x+7y) chia hết cho 31
=>31x +62y chia hết cho 31
Mình chỉ giúp bạn đến đây thôi ; phần còn lại thì bạn tự làm nhé ! Nếu suy nghĩ mãi ko ra thì mình sẽ giúp nốt cho.
6x + 11y+31 y chia hết cho 31
Suy ra 6x+ 42 y chia hết cho 31
6(x+7y) chia hết cho 31
Vậy x+7y cũng chia hết cho 31 và điều ngược lại cũng đúng
Nếu thấy đúng cho mình cái tick hi
\(\left(6x+11y\right)⋮31\)
\(\Leftrightarrow5\left(6x+11y\right)⋮31\)(vì \(\left(5,31\right)=1\))
\(\Leftrightarrow\left(30x+55y\right)⋮31\)
\(\Leftrightarrow\left[\left(30x+55y\right)-\left(31x+2.31y\right)\right]⋮31\)
\(\Leftrightarrow\left(-x-7y\right)⋮31\)
\(\Leftrightarrow\left(x+7y\right)⋮31\)
Ta có đpcm.
Do ta biến đổi tương đương nên điều ngược lại cũng đúng.
ta có: 31x+186y chia hết 31
6x+11y chia hết 31
=> 31x-6x+186y-11y chia hết 31
=>25x+175y chia hết 31
=>25(x+7y) chia hết 31
mà 25 ko chia hết 31
=> x+7y chia hết31
6x + 11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 (31y chia hết cho 31)
=> 6x + 42y chia hết cho 31
=> 6.(x + 7y) chia hết cho 31
Mà (6; 31) = 1
=> x + 7y chia hết cho 31
Điều ngược lại vẫn đúng (Nhân x + 7y cho 6).
6x+11y chi hết cho 31
=> 6x +42y chia hết cho 31
6(x+7y) chia hết cho 31
Vậy x+7y cũng chia hết cho31 và điều ngược lại cũng đúng.
Có: 5.(6x+11y)+(x+7y)
= 30x+55y+x+7y
= 31x+62y
= 31.(x+2y)
Vì 31.(x+2y) chia hết cho 31
Mà 6x+11y chia hết cho 31\(\Rightarrow\) 5.(6x+11y) chia hết cho 31\(\Rightarrow\)x+7y chia hết cho 31 (Tính chất chia hết của một tổng) (đpcm)
(Ngược lại ta cũng chứng minh tương tự.)
6x+11y :31
Suy ra 6x+11y+31y:31
Suy ra 6x+42y :31
Suy ra 6(x+7y):31
Mà UCLN( 6;31)=1
Suy ra x+7y :31
Ủng hộ mk nha
6x+11y :31
Suy ra 6x+11y+31y:31
Suy ra 6x+42y :31
Suy ra 6(x+7y):31
Mà UCLN( 6;31)=1
Suy ra x+7y :31