Cho 2 biểu thức M=2/3x-1/3 và N=3x-2.(x-1)
a) Tìm x sao cho M=N
b) tìm x sao cho M+n=8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Để \(M=N\) thì \(\frac{2}{3}x-\frac{1}{3}=3x-2\left(x-1\right)\), ta có:
\(\frac{2}{3}x-\frac{1}{3}=3x-2\left(x-1\right)\\ \Leftrightarrow\frac{2}{3}x-\frac{1}{3}=3x-2x+2\\ \Leftrightarrow\frac{2}{3}x-3x+2x=\frac{1}{3}+2\\ \Leftrightarrow\frac{-1}{3}x=\frac{7}{3}\\ \Leftrightarrow x=-7\)
Vậy \(x=-7\) để \(M=N\)
b. Để \(M+N=8\) thì \(\frac{2}{3}x-\frac{1}{3}+\left[3x-2\left(x-1\right)\right]=8\), ta có:
\(\frac{2}{3}x-\frac{1}{3}+\left[3x-2\left(x-1\right)\right]=8\\\Leftrightarrow \frac{2}{3}x-\frac{1}{3}+\left[3x-2x+2\right]=8\\\Leftrightarrow \frac{2}{3}x-\frac{1}{3}+3x-2x+2=8\\ \Leftrightarrow\frac{2}{3}x+3x-2x=\frac{1}{3}-2+8\\\Leftrightarrow \frac{5}{3}x=\frac{19}{3}\\\Leftrightarrow x=\frac{19}{5}\)
Vậy \(x=\frac{19}{5}\) để \(M+N=8\)
a, Để M=N thì:
\(\dfrac{2}{3}x-\dfrac{1}{3}=3x-2\left(x-1\right)\\ \Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{3}=3x-2x+2\\ \Leftrightarrow x-\dfrac{2}{3}x=2+\dfrac{1}{3}\\ \Leftrightarrow\dfrac{1}{3}x=\dfrac{7}{3}\\ \Leftrightarrow x=7\)
b, Để M+N=8 thì:
\(\dfrac{2}{3}x-\dfrac{1}{3}+3x-2x+2=8\) (mình làm tắt nhé :>)
\(\Leftrightarrow\dfrac{5}{3}x=8+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{5}{3}x=\dfrac{29}{3}\)
\(\Leftrightarrow5x=29\\ \Leftrightarrow x=\dfrac{29}{5}\)
Chúc bạn học tốt nha
a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)
\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)
b. -Để M thuộc Z thì:
\(\left(x^2+x-2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)
\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)
\(\Rightarrow4⋮\left(x+3\right)\)
\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)
c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)
\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)
a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)
Bậc của P(x) là 3
\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)
Bậc của Q(x) là 3
b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)
Ta có: \(M\left(x\right)+N\left(x\right)=4x^2-3x\Rightarrow N\left(x\right)=\left(4x^2-3x\right)-M\left(x\right)\)
\(N\left(x\right)=\left(4x^2-3x\right)-\left(9x^3-5x^2+7x+5\right)\)
\(N\left(x\right)=4x^2-3x-9x^3+5x^2-7x-5\)
\(N\left(x\right)=-9x^3+\left(4x^2+5x^2\right)-\left(3x+7x\right)-5\)
\(N\left(x\right)=-9x^3+9x^2-10x-5\)
Vậy đa thức N(x) là \(N\left(x\right)=-9x^3+9x^2-10x-5\)
a: \(M\left(x\right)=-2x^4-3x^2-7x-2\)
\(N\left(x\right)=2x^4+3x^2+4x-5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)=-3x-7\)
Đặt P(x)=0
=>-3x-7=0
hay x=-7/3
b: Q(x)=N(x)-M(x)
\(=2x^4+3x^2+4x+5+2x^4+3x^2+7x+2\)
\(=4x^4+6x^2+11x+7\)
a, Theo bài ra ta có : M = N
hay \(\frac{2}{3}x-\frac{1}{3}=3x-2\left(x-1\right)\)
\(\Leftrightarrow\frac{2x-1}{3}=3x-2x+2\)
\(\Leftrightarrow\frac{2x-1}{3}=x+2\Leftrightarrow\frac{2x-1}{3}=\frac{3x+6}{3}\)
Khử mẫu : \(\Rightarrow2x-1=3x+6\Leftrightarrow-x-7=0\Leftrightarrow x=-7\)
b, Theo bài ra ta có : M + N = 8
hay \(\frac{2x}{3}-\frac{1}{3}+2x-2\left(x-1\right)=8\)
\(\Leftrightarrow\frac{2x-1}{3}+2x-2x+2=8\)
\(\Leftrightarrow\frac{2x-1}{3}-6=0\Leftrightarrow\frac{2x-1-18}{3}=0\Leftrightarrow2x-19=0\Leftrightarrow x=\frac{19}{2}\)