Cho hình thang ABCD, đáy nhỏ CD. Từ D kẻ đường thẳng song song với BC, cắt AC tại M, cắt AB tại K. Từ C kẻ đường thẳng song với AD, cắt AB tại F. Qua F kẻ đường thẳng song song với AC cắt BC tại P. Chứng minh rằng:
a) Các tứ giác AFCD, DCBK là hình bình hành.
b) MP // AB.
c) Ba đường thẳng MP, CF, DB đồng qui.
a) Xét tứ giác AFCD có
AF//CD(AB//CD, F∈AB)
AD//CF(gt)
Do đó: AFCD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Xét tứ giác DCBK có
DC//BK(DC//AB, K∈AB)
DK//CB(gt)
Do đó: DCBK là hình bình hành(Dấu hiệu nhận biết hình bình hành)