K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2016

X=40;y=0

Cần cách lm ko?

\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)

=>40=(1-2y)x

từ đó lập bảng

29 tháng 1 2016

x = 40

y = 0

Bạn thay vào đi!

12 tháng 7 2016

\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)

\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn

Bài 2:

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau:

Bạn tự làm nha

12 tháng 7 2016

Bài 1 :

\(\frac{x}{y}=\frac{5}{3}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )

\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)

\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)

Mà x ; y cùng dấu nên :

\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)

Bài 2 :

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)

\(\frac{x}{10}=3\Rightarrow x=30\)

\(\frac{y}{15}=3\Rightarrow y=45\)

\(\frac{z}{21}=3\Rightarrow z=63\)

28 tháng 12 2018

\(2^{x+1}.3^y=12^x\Leftrightarrow2^x.2.3^y=12^x\Leftrightarrow2.3^y=6^x\Leftrightarrow2.3^y=2^x.3^x\)

Xét y=0 \(\Rightarrow2.3^0=6^x\Leftrightarrow2=6^x\) (pt vô nghiệm)

Xét y=1 \(\Rightarrow6=6^x\Leftrightarrow x=1\)

Xét \(y\ge2\Rightarrow x>1\) 

\(\Leftrightarrow3^y=2^{x-1}.3^x\) (VT không chia hết cho 2, VP chia hết cho 2 suy ra vô lí)

10 tháng 3 2019

Theo bài ra: 5x+y4=18

5/x=1/82y/8

5x=12y/8

5:x=(12y):8

x(12y)=40 ( Quy tắc chuyển vế )

Có: 12y là số lẻ

⇒ 1 - 2y thuộc ước lẻ của 40.

12y{±1;±5}

Ta có bảng sau:

12y1155
y0123
x404085

Vậy x{40;40;8;8};y{0;1;2;3}

12 tháng 3 2019

51464

12 tháng 3 2019

\(\frac{x}{3}=\frac{2}{y-5}-\frac{1}{6}\)

=> \(\frac{x}{3}+\frac{1}{6}=\frac{2}{y-5}\)

=> \(\frac{2x+1}{6}=\frac{2}{y-5}\)

=> (2x + 1)(y - 5) = 2.6

=> (2x + 1)(y - 5) = 12

=> 2x + 1; y - 5 \(\in\)Ư(12) = {1;2; 3; 4; 6; 12}

Vì 2x + 1 là số lẽ => 2x + 1 \(\in\){1; 3}

Lập bảng : 

   2x + 1 1 3
    y - 5 12 4
    x  0 1
   y 17 9

Vậy ....

4 tháng 5 2019

1. Ta có: \(\frac{3+x}{5+y}=\frac{3}{5}\Leftrightarrow\hept{\begin{cases}3+x=3k\\5+y=5k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\left(k-1\right)\\y=5\left(k-1\right)\end{cases}}\)

\(\Rightarrow x+y=3\left(k-1\right)+5\left(k-1\right)=\left(3+5\right)\left(k-1\right)\)

\(\Rightarrow8\left(k-1\right)=16\)

\(\Leftrightarrow k-1=16\div8\)

\(\Leftrightarrow k-1=2\)

\(\Leftrightarrow k=2+1\)

\(\Leftrightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}x=3.3-3=6\\y=5.3-5=10\end{cases}}\)

Vậy x = 6 và y = 10

4 tháng 5 2019

Với \(\frac{3+x}{5+y}=\frac{3}{5}\Leftrightarrow x=3a;y=5a\left(1\right)\)

Ta có :

\(x+y=3a+5a\)

hay \(16=3a+5a\)

\(\Leftrightarrow16=8a\)

\(\Leftrightarrow a=2\left(2\right)\)

Thay ( 2 ) vào ( 1 ) . Ta có :

\(x=3.2;y=5.2\)

\(\Leftrightarrow x=6;y=10\)

Vậy x = 6; y=10