K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 4 2021

Đề bài sai

Chỉ tồn tại duy nhất cặp x;y thỏa mãn pt khi đề bài là: 

\(x^2-4x+y-6\sqrt{y}+13=0\)

NV
1 tháng 4 2021

ĐKXĐ: ...

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\\sqrt{y}-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)

Vậy có duy nhất cặp  số (x;y)=(2;9) thỏa mãn phương trình

19 tháng 5 2016

1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)

 Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c

=> a+b+c=0=> a^3+b^3+c^3=3abc=0

=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0

=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0

tìm được x=3

2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)

<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)

<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

<=> (x-y-1)^2=0 và (y+2)^2=0

=> x=-1;y=-2

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

27 tháng 5 2017

\(\Leftrightarrow3x^2+x\left(2y^2-y-3\right)-\left(2y^2-y-3\right)=0\)

đặt \(\left(2y^2-y-3\right)=m\)với m là số tự nhiên nên phương trình trở thành

\(\Leftrightarrow3x^2+mx-m=0\)

có \(\Delta=m^2+12m=\left(m+6\right)^2-36=k^2\)vì x,y nguyên nên \(\Delta\)là số chính phương

\(\Leftrightarrow\left(m+6-k\right)\left(m+6+k\right)=36\)

m+6-k và m+6+k là ước của 36 ta xét các trường hợp có thể sảy ra (36,6);(18,2);(12,3);(9,4);(6,6).

  1. \(\hept{\begin{cases}m+6+k=36\\m+6-k=1\end{cases}}\Leftrightarrow2m=25\)không thỏa mãn
  2. \(\hept{\begin{cases}m+6+k=18\\m+6-k=2\end{cases}}\Leftrightarrow2m=8\Leftrightarrow m=4\)\(\Rightarrow\Delta=64;2y^2-y-3=4\Leftrightarrow2y^2-y-7=0\)\(\Leftrightarrow\Delta_1=1^2+2.4.7=57\) loại
  3. \(\hept{\begin{cases}m+6+k=12\\m+6-k=3\end{cases}}\Leftrightarrow2m=3\)loại
  4. \(\hept{\begin{cases}m+6+k=9\\m+6-k=4\end{cases}}\Leftrightarrow2m=1\)loại
27 tháng 5 2017

5.\(\hept{\begin{cases}m+6+k=6\\m+6-k=6\end{cases}}\Leftrightarrow2m=0\Leftrightarrow m=0\)

\(2y^2-y-3=0\Leftrightarrow\orbr{\begin{cases}y=-1\\y=\frac{3}{2}\end{cases}}\)\(\Rightarrow y=-1\)

thay m=0 có \(\Delta=0\)phương trình ban đầu trở thành

\(3x^2=0\Leftrightarrow x=0\)

vậy cặp (x,y) nguyên là (0,-1)