So Sánh : S = \(\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\) và \(\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{1}{4}\) và \(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{1}{20}\)
Suy ra:
\(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
a: \(\Leftrightarrow\dfrac{32}{x}=\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{99}\)
=>32/x=1/3-1/5+1/5-1/7+...+1/9-1/11
=>32/x=1/3-1/11=8/33
=>x=32:8/33=132
b: \(\Leftrightarrow1-\dfrac{1}{6}+1-\dfrac{1}{12}+...+1-\dfrac{1}{56}=\dfrac{x}{16}\)
\(\Leftrightarrow6-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\right)=\dfrac{x}{16}\)
=>x/16=6-1/2+1/8=11/2+1/8=45/8=90/16
=>x=90
c: \(\Leftrightarrow\dfrac{22}{x}=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\)
=>22/x=1/2*2/3*...*9/10*3/2*4/3*...*11/10
=>22/x=1/10*11/2=11/20=22/40
=>x=40
\(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}\)
Ta có :
+) \(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}\)
+) \(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}\)
\(\Leftrightarrow S< \dfrac{1}{5}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{40}+\dfrac{1}{40}\)
\(\Leftrightarrow S< \dfrac{1}{2}\)
Vậy,,,
Ta có: \(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{2}{8}=\dfrac{1}{4}\)
\(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{2}{40}=\dfrac{1}{20}\)
Do đó: \(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{4}+\dfrac{1}{20}=\dfrac{6}{20}=\dfrac{3}{10}\)
\(\Leftrightarrow\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{3}{10}+\dfrac{1}{5}=\dfrac{3}{10}+\dfrac{2}{10}=\dfrac{1}{2}\)
hay \(S< \dfrac{1}{2}\)(đpcm)