Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
c: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{HAE}\) chung
Do đó: ΔAEH\(\sim\)ΔAOD
Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)
1:
ΔOBC cân tại O
mà OI là trung tuyến
nên OI vuông góc BC
góc OIS=góc OAS=90 độ
=>OIAS nội tiếp
2:
Xet ΔSAO vuông tại A có AH là đường cao
nên SH*SO=SA^2
3:
ΔOAD cân tại O
mà OS là đường cao
nên OS là phân giác của góc AOD
Xét ΔAOS và ΔDOS co
OA=OD
góc AOS=góc DOS
OS chung
=>ΔAOS=ΔDOS
=>góc SDO=90 độ
=>SD là tiếp tuyến của (O)
4: Xet ΔSAK và ΔSIA có
góc SAK=góc SIA
gó ASK chung
=>ΔSAK đồng dạng với ΔSIA
=>SA/SI=SK/SA
=>SA^2=SK*SI
a: Xét tứ giác MAOD có
\(\widehat{MAO}+\widehat{ODM}=180^0\)
Do đó: MAOD là tứ giác nội tiếp
a, Ta có SA = SB (tc tiếp tuyến cắt nhau )
OA = OB = R
Vậy OS là đường trung trực đoạn AB
=> SO vuông AB tại H
b, Vì I là trung điểm
=> OI vuông NS
Xét tứ giác IHSE ta có ^EHS = ^EIS = 900
mà 2 góc này kề, cùng nhìn cạnh ES
Vậy tứ giác IHSE nt 1 đường tròn
=> ^ESH = ^HIO ( góc ngoài đỉnh I )
Xét tam giác OIH và tam giác OSE có
^HIO = ^OSE (cmt)
^O_ chung
Vậy tam giác OIH ~ tam giác OSE (g.g)
\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)
Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có
\(OA^2=OH.OS\)(hệ thức lượng)
\(\Rightarrow OA^2=R^2=OI.OE\)