K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 10 2021

\(f\left(1-x\right)+f\left(x\right)=\dfrac{9^{1-x}}{9^{1-x}+3}+\dfrac{9^x}{9^x+3}=\dfrac{9}{9+3.9^x}+\dfrac{9^x}{9^x+3}=\dfrac{3}{9^x+3}+\dfrac{9^x}{9^x+3}=1\)

\(\Rightarrow f\left(x\right)=1-f\left(1-x\right)\)

\(\Rightarrow f\left(cos^2x\right)=1-f\left(sin^2x\right)\)

Do đó:

\(f\left(3m+\dfrac{1}{4}sinx\right)+f\left(cos^2x\right)=1\)

\(\Leftrightarrow f\left(3m+\dfrac{1}{4}sinx\right)=f\left(sin^2x\right)\) (1)

Hàm \(f\left(x\right)=\dfrac{9^x}{9^x+3}\) có \(f'\left(x\right)=\dfrac{3.9^x.ln9}{\left(9^x+3\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến trên R

\(\Rightarrow\left(1\right)\Leftrightarrow3m+\dfrac{1}{4}sinx=sin^2x\)

Đến đây chắc dễ rồi, biện luận để pt \(sin^2x-\dfrac{1}{4}sinx=3m\) có 8 nghiệm trên khoảng đã cho

26 tháng 1 2021

Đồ thị hàm số \(y=f\left(\left|x\right|\right)\)

\(f^2\left(\left|x\right|\right)+\left(m-1\right)f\left(\left|x\right|\right)-m=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=1\left(2\right)\\f\left(\left|x\right|\right)=-m\left(3\right)\end{matrix}\right.\)

Từ đồ thị ta thấy phương trình \(\left(2\right)\) có hai nghiệm phân biệt nên phương trình \(\left(1\right)\) có hai nghiệm phân biệt khi phương trình \(\left(3\right)\) có hai nghiệm phân biệt khác hai nghiệm của phương trình \(\left(2\right)\).

\(\Leftrightarrow\left[{}\begin{matrix}-m=-3\\-1< -m< 1\\-m>1\end{matrix}\right.\)

...

29 tháng 1 2022

\(1.x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(1\right)\)\(đặt:x^2+\dfrac{1}{x^2}=t\)

\(x>0\Rightarrow t\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

\(x< 0\Rightarrow-t=-x^2+\dfrac{1}{\left(-x^2\right)}\ge2\Rightarrow t\le-2\)

\(\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\left(2\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2-2mt+2m-1=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin\left(2\right)\\t=2m-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2m-1\le-2\\2m-1\ge2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{3}{4}\end{matrix}\right.\)

\(2.\)  \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=3-m\end{matrix}\right.\)

\(dựa\) \(vào\) \(đồ\) \(thị\) \(f\left(\left|x\right|\right)\) \(\Rightarrow f\left(\left|x\right|\right)=-1\) \(có\) \(2nghiem\) \(pb\)

\(\left(1\right)có\) \(6\) \(ngo\) \(pb\Leftrightarrow\left\{{}\begin{matrix}-1< 3-m< 3\\3-m\ne-1\\\end{matrix}\right.\)\(\Leftrightarrow0< m< 4\)

\(\Rightarrow m=\left\{1;2;3\right\}\)

 

 

Chọn B

NV
26 tháng 3 2023

\(\Leftrightarrow\sqrt{2t^2+mt-m-1}=t-1\) có 2 nghiệm thỏa mãn \(1\le t< 3\)

\(\Rightarrow2t^2+mt-m-1=t^2-2t+1\)

\(\Leftrightarrow f\left(t\right)=t^2+\left(m+2\right)t-m-2=0\) có 2 nghiệm \(1< t_1< t_2< 3\) (hiển nhiên \(t=1\) ko là nghiệm)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+2\right)^2+4\left(m+2\right)>0\\f\left(1\right)=1>0\\f\left(3\right)=9+3\left(m+2\right)-m-2>0\\1< \dfrac{t_1+t_2}{2}=\dfrac{-m-2}{2}< 3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)\left(m+6\right)>0\\2m+13>0\\2< -m-2< 6\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-2\\m< -6\end{matrix}\right.\\m>-\dfrac{13}{2}\\-8< m< -4\end{matrix}\right.\) \(\Rightarrow-\dfrac{13}{2}< m< -6\)

NV
26 tháng 1 2022

 \(\Leftrightarrow\left|x^2-4\left|x\right|+2\right|=m\) (1) có 8 nghiệm phân biệt

Đặt \(x^2-4\left|x\right|+2=t\) (2) 

Từ đồ thị của hàm \(y=x^2-4\left|x\right|+2\) ta thấy:

- Với \(t< -2\Rightarrow\) (2) vô nghiệm

- Với \(\left[{}\begin{matrix}t=-2\\t>2\end{matrix}\right.\Rightarrow\) (2) có 2 nghiệm

- Với \(-2< t< 2\Rightarrow\) (2) có 4 nghiệm

- Với \(t=2\Rightarrow\) (2) có 3 nghiệm

Khi đó (1) trở thành: \(\left|t\right|=m\) (3) có tối đa 2 nghiệm

\(\Rightarrow\)Phương trình đã cho có 8 nghiệm pb khi và chỉ khi (3) có 2 nghiệm t phân biệt thỏa mãn \(-2< t< 2\)

\(\Rightarrow0< m< 2\)

Không có phương án nào đúng