K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

 

a) Ta có:

 

K đối xứng với H qua BC

⇒ BC là trung trực của HK

⇒ BH=BK; CH=CK

Xét ΔBHC và ΔBKC có:

BH=BK (cmt)

CH=CK (cmt)

BC: cạnh chung

Do đó ΔBHC = ΔBKC(c.c.c)

b) Ta có:

ˆBHK = ˆBAH + ˆABH (góc ngoài của ΔABH)

ˆCHK = ˆCAH+ ˆACH (góc ngoài của ΔACH)

⇒ ˆBHC = ˆBHK + ˆCHK

= ˆBAH + ˆABH + ˆCAH + ˆACH

= ˆBAC + ˆABH + ˆACH

Ta lại có:

ˆBAC+ˆABH = 90o (BH⊥AC)

ˆBAC+ˆACH = 90o (CH⊥AB)

⇒2ˆBAC+ˆABH+ˆACH=180o

⇒ˆABH+ ˆACH = 180o− 2ˆBAC

Do đó:

ˆBHC =ˆBAC+ 180o− 2ˆBAC= 180o− ˆBAC= 180o−70o = 110o

Mặt khác:

ˆBHC = ˆBKC (ΔBHC = ΔBKC)

⇒ˆBKC=110

a: Ta có: H và K đối xứng nhau qua BC

nên BC là đường trung trực của HK

Suy ra: BH=BK và CH=CK

Xét ΔBHC và ΔBKC có 

BH=BK

BC chung

HC=KC

Do đó: ΔBHC=ΔBKC

18 tháng 8 2015

a : Gọi O là giao của HK và CB, ta có:

S của tam giác CHB= \(\frac{1}{2}OH\cdot CB\)  

S của tam giác BKC=\(\frac{1}{2}KO\cdot CB\) 

Mà ta có K là điểm đối xứng với H qua BC => KO=HO

Nên ta có thể thay 

S của tam giác BKC=\(\frac{1}{2}OH\cdot CB\) 

Hay \(Sbkc=Sbhc\)

Nếu đúng thì cho mk xin **** nha

Đáp án:

ˆBKC=110oBKC^=110o

Giải thích các bước giải:

a) Ta có:

KK đối xứng với HH qua BCBC

⇒BC⇒BC là trung trực của HKHK

⇒BH=BK;CH=CK⇒BH=BK;CH=CK

Xét ΔBHC∆BHC và ΔBKC∆BKC có:

BH=BK(cmt)BH=BK(cmt)

CH=CK(cmt)CH=CK(cmt)

BC:BC: cạnh chung

Do đó ΔBHC=ΔBKC(c.c.c)∆BHC=∆BKC(c.c.c)

b) Ta có:

ˆBHK=ˆBAH+ˆABHBHK^=BAH^+ABH^ (góc ngoài của ΔABH∆ABH)

ˆCHK=ˆCAH+ˆACHCHK^=CAH^+ACH^ (góc ngoài của ΔACH∆ACH)

⇒ˆBHC=ˆBHK+ˆCHK⇒BHC^=BHK^+CHK^

=ˆBAH+ˆABH+ˆCAH+ˆACH=BAH^+ABH^+CAH^+ACH^

=ˆBAC+ˆABH+ˆACH=BAC^+ABH^+ACH^

Ta lại có:

ˆBAC+ˆABH=90oBAC^+ABH^=90o (BH⊥AC)(BH⊥AC)

ˆBAC+ˆACH=90oBAC^+ACH^=90o (CH⊥AB)(CH⊥AB)

⇒2ˆBAC+ˆABH+ˆACH=180o⇒2BAC^+ABH^+ACH^=180o

⇒ˆABH+ˆACH=180o−2ˆBAC⇒ABH^+ACH^=180o−2BAC^

Do đó:

ˆBHC=ˆBAC+180o−2ˆBAC=180o−ˆBAC=180o−70o=110oBHC^=BAC^+180o−2BAC^=180o−BAC^=180o−70o=110o

Mặt khác:

ˆBHC=ˆBKC(ΔBHC=ΔBKC)BHC^=BKC^(∆BHC=∆BKC)

⇒ˆBKC=110o

a: Ta có: K đối xứng với H qua BC

nên BC là đường trung trực của HK

=>BH=BK và CH=CK

Xét ΔBHC và ΔBKC có

BH=BK

HC=KC

BC chung

Do đó;ΔBHC=ΔBKC

b: \(\widehat{BAC}=70^0\)

nên \(\widehat{ABC}+\widehat{ACB}=110^0\)

\(\widehat{HBC}+\widehat{HCB}=90^0-\widehat{ABC}+90^0-\widehat{ACB}\)

\(=180^0-110^0=70^0\)

=>\(\widehat{BHC}=\widehat{BKC}=110^0\)

27 tháng 5 2018

a) Ta có \(\widehat{BNC}=\widehat{BMC}=90độ\)(gt)

Nên tứ giác BNMC nội tiếp (2 đỉnh N,M cùng BC với 2 góc bằng nhau)

(Câu sau không rõ. Cái gì là tâm đường tròn nội tiếp ΔMNH?)

b) Xét ΔAMN và ΔABC có:

\(\widehat{BAC}\)chung

\(\widehat{AMN}=\widehat{ABC}\)(tứ giác BNMC nội tiếp)

Do đó ΔAMN ~ ΔABC

Nên\(\frac{AM}{AB}=\frac{AN}{AC}\)

hay AM.AC=AN.AB

Ta có \(\widehat{ANH}=\widehat{AMH}=90độ\left(gt\right)\)

Nên \(\widehat{ANH}+\widehat{AMH}=180độ\)

Suy ra tứ giác ANHM nội tiếp

Do đó \(\widehat{NAM}+\widehat{NHM}=180độ\)

\(\widehat{NHM}=\widehat{BHC}\)(đối đỉnh)

    \(\widehat{BHC}=\widehat{BLC}\)(tính chất đối xứng trục)

Nên \(\widehat{NAM}+\widehat{BLC}=180độ\)

Suy ra tứ giác ABLC nội tiếp đường tròn (O) (tổng 2 góc đối bằng 180độ)

c) (Câu này hình như bạn ghi sai đề rồi, nếu I là giao điểm AH với AN thì I sẽ trùng với A. Nên mình nghĩ I là giao điểm MN với AH)

Ta có \(\widehat{HDC}=\widehat{HMC}=90độ\left(gt\right)\)

Nên \(\widehat{HDC+}\widehat{HMC}=180độ\)

Do đó tứ giác HMCD nội tiếp

Suy ra \(\widehat{HMD}=\widehat{HCD}\)

\(\widehat{HCD}=\widehat{HMN}\)(tứ giác BMNC nội tiếp)

Nên \(\widehat{HMD}=\widehat{HMN}\)

Vậy MH là phân giác \(\widehat{NMD}\)

Mà MH vuông góc AM (gt)

Nên AM là phân giác ngoài

Do đó \(\frac{IH}{ID}=\frac{AH}{AD}\)

hay IH.AD=AH.ID

a.Ta có :
ˆAFH=ˆADB=90o→ΔAFH∼ΔADB(g.g)

→AFAD=AHAB→AF.AB=AH.AD

Tương tự AH.AD=AE.AC→AF.AB=AE.AC

b.Ta có  :
ˆHFA=ˆHEA=ˆHFB=ˆHDB=90o

→AEHF,AEDB,FHDB nội tiếp

→ˆHFE=ˆFAE=ˆHBD=ˆHFD

→FH là phân giác ˆDFE
Mà FA⊥FH→FA là phân giác góc ngoài tại đỉnh F của ΔDEF

→HIHD=FIFD=AIAD

→IH.AD=AI.DH