K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
8 tháng 1 2021

áp dụng bất đẳng thức cauchy cho 2015 số , ta có

\(2x^{2015}+2013=x^{2015}+x^{2015}+1+1+..+1\ge2015\sqrt[2015]{x^{2015}.x^{2015}}=2015x^2\)

tương tự ta có

\(\hept{\begin{cases}2.y^{2015}+2013\ge2015y^2\\2.z^{2015}+2013\ge2015z^2\end{cases}}\)

cộng ba bất đẳng thức lại ta có \(2\left(x^{2015}+y^{2015}+z^{2015}\right)+2013.3\ge2015\left(x^2+y^2+z^2\right)\)

hay \(2015\left(x^2+y^2+z^2\right)\le2.3+2013.3=2015.3\Rightarrow\left(x^2+y^2+z^2\right)\le3\)

dấu "=" xảy ra khi x=y=z=1

3 tháng 4 2019

Có x2015 + y2015 + z2015 = 3

Điều này xảy ra khi và chỉ khi x = y = z = 1

=> max của x2 + y2 + z2  = 3

Vậy...

9 tháng 11 2019

Áp dụng BĐT Cô-si cho 2015 số dương : x2015,x2015 và 2013 số 1. Ta có :

\(x^{2015}+x^{2015}+1+1+...+1\ge2015\sqrt[2015]{\left(x^2\right)^{2015}}=2015x^2\)

TT : \(y^{2015}+y^{2015}+1+1+...+1\ge2015y^2\)

\(z^{2015}+z^{2015}+1+1+...+1\ge2015z^2\)

Cộng 3 vế BĐT , ta được :

\(2\left(x^{2015}+y^{2015}+z^{2015}\right)+2013.3\ge2015\left(x^2+y^2+z^2\right)\)

\(\Rightarrow x^2+y^2+z^2\le3\)

Dấu ' = " xảy ra khi x = y = z = 1

4 tháng 10 2016

Nếu \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\Rightarrow x=y=z=0\)

Vậy     \(T=\frac{\left(x-z\right)^2}{\left(x-y\right)^2.\left(y-z\right)}=\frac{0^2}{0^2.0}\)   mà phân số được viết dưới dạng \(\frac{a}{b}\) với a thuộc Z và b khác 0

\(\Rightarrow\)T không có giá trị thỏa mãn

24 tháng 10 2021

Mình nhầm xíu :

Tính giá trị của biểu thức : 

P = x2015 + y2015 + z2015

24 tháng 10 2021

   Ta có : x + y + z = 1

=> (x + y + z)3 = 1

=> x3 + y3 + z3 + 3(x + y)(y + z)(z + x) = 1

=> (x + y)(y + z)(z + x) = 0

<=> x = -y hoặc y = -z hoặc z = -x

Nếu x = -y => x = y = 0 ; z = 1

Nếu y = -z => y = z = 0 ; x = 1

Nếu z = -x => z = x = 0 ; y = 1

Khi đó P = 1

22 tháng 8 2016

Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)

\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)

Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)

               \(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)

Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)

=>P không phải là số chính phương

16 tháng 10 2017

trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)