Bài 5. (1.0điểm) Tìm giá trị lớn nhất của biểu thức:
A = I x - 2018I - Ix - 2017I
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=[x-2018]-[x-2017]
A=x-2018-x+2017
A=-1
GTLN A=-1
3x+2-3x=24
3x.(32-1)=24
3x.8=24
3x =24:8
3x =31
=>x=1
Vậy x=3
Chúc bn học tốt
\(x^2+2x+5\)
\(=\left(x+1\right)^2+4\ge4\forall x\)
\(\Leftrightarrow\dfrac{5}{x^2+2x+5}\le\dfrac{5}{4}\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 1:
Ta có |x-8| > 0 với mọi x
=>A=37-|x-8| > 37 với mọi x
Vậy GTLN của A=37 với x-8=0 =>x=8
Bài 2 tương tự nhé
Học tốt :))
a: Ta có: \(A=-x^2+4x+3\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7\le7\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(B=-x^2+x\)
\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Ta có /x-1/Lớn hơn hoặc bằng 0
/x-2017/ Lớn hơn hoặc bằng 0
=>/x-1/+/x-2017/Lớn hơn hoặc bằng 0
Dấu "=" xảy ra khi và chỉ khi x-1=0=>x=1
x-2017=0=>x=2017
Vậy /x-1/+/x-2017/Lớn hơn hoặc bằng 0 khi X=1 hoặc x=2017
[x-1] và [x-2017]>0 suy ra biểu thức >0
Nếu x<1<2017 thì biểu thức = -(x-1)+-(x-2017)=-x+1-x+2017=2*-x+2018. Mà x<1<2017=>biểu thức>2018.
Nếu x>=2017 thì biểu thức = (x-1)+(x-2017)=x-1+x-2017=2x-2018. Mà x>=2017=>biểu thức >2018.
Nếu 2017>x>=1 thì biểu thức =(x-1)+-(x-2017)=x-1+(-x)+2017=2016.
Vậy giá trị nhỏ nhất của biểu thức là 2016
\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)
\(A=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|=\left|-1\right|=1\)
Dấu "=" xảy ra <=> (x-2018)(x-2017) > 0
<=> \(\left[{}\begin{matrix}x>2018\\x< 2017\end{matrix}\right.\)
Vậy MaxA = 1 <=> \(\left[{}\begin{matrix}x>2018\\x< 2017\end{matrix}\right.\)
A = | x − 2018 | − | x − 2017 | ≤ | x − 2018 − x + 2017 | = | − 1 | = 1 Dấu "=" xảy ra <=> (x-2018)(x-2017) > 0 <=> [ x > 2018 x < 2017 Vậy MaxA = 1 <=> [ x > 2018 x < 2017