Tìm tất cả các số tự nhiên n sao cho các đa giác đều n cạnh, n+1 cạnh, n+2 cạnh, n+3 cạnh đều có số đo mỗi góc là 1 số nguyên độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tổng số đo các góc của một đa giác n cạnh = \((7-2).180^0\) = \(900^0\)
b)Số đo mỗi góc của ngũ giác đều là : \(\frac{(5-2).180^0}{5}\)= \(108^0\)
Số đo mỗi góc của lục giác đều là \(\frac{(6-2).180^0}{6}\)= \(120^0\)
Tổng số đo các góc của đa giác n cạnh là: 140.n
Mặt khác đa giác n cạnh thì có tổng số đo các góc của đa giác là: (n-2). 180
Suy ra: 140n = (n – 2). 180
⇔ 140n = 180n - 360
⇔ 40n = 360 ⇔ n = 9
Chọn đáp án A
ét hai n-giác đều: A1A2..An và A'1A'2..A'n
=> số đo các góc đều bằng nhau = 180(n-2)/n
hai tgiác A1A2A3 và A'1A'2A'3 bằng nhau
=> tồn tại duy nhất phép dời D: (A1A2A3) --> (A'1A'2A'3)
do phép dời bảo toàn độ lớn của góc (kể cả hướng góc) và khoảng cách 2 điểm
=> qua D: A4 --> A'4
Có thể làm rõ hơn là gọi D: A4 --> A''4
có A3A4 = A'3A''4 và góc định hướng A2Â3A4 = A'2Â'3A''4
=> A''4 ≡ A'4
tương tự qua D: An --> A'n
=> D: (A1A2..An) --> (A'1A'2..A'n)
=> A1A2..An = A'1A'2..A'n