chứng minh rằng : 2x2 + 4y2 + 4xy - 6x + 10 > với mọi số thực x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2x^2+4y^2+4xy-6x+10\)\(=x^2+4xy+4y^2+x^2-6x+9+1\)\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Vì \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\)\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2\ge0\)\(\Leftrightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\)\(2x^2+4y^2+4xy-6x+10>0\left(đpcm\right)\)
\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng với \(\forall x,y\))
-Vậy BĐT đã được c/m.
-Dấu "=" xảy ra khi \(x=y\)
a) \(-\left(x^2-6x+10\right)=-\left(x^2-6x+9+1\right)=-\left[\left(x-3\right)^2+1\right]\le-1< 0\forall x\)
BĐT đúng
b) \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
BĐT đúng
c)Dấu "=" ko xảy ra???
\(=\left(4x^2+2.2x.y+y^2\right)+2\left(2x+y\right)+1+2\)
\(=\left(2x+y\right)^2+2.\left(2x+y\right).1+1+1\)
\(=\left(2x+y+1\right)^2+1\ge1>0\) (đpcm)
a. −x2 + 6x - 10
= −(x2 − 6x) − 10
= −(x2 − 2.x.3 + 32 − 9) − 10
= −(x − 3)2 + 9 − 10
= −(x − 3)2 −1
Vì (x − 3)2 ≥ 0 ∀ x ⇒ −(x − 3)2 ≤ 0 ⇒ −(x − 3)2 −1 ≤ −1
Vậy −(x − 3)2 −1 < 0 ⇒ −x2 + 6x - 10 luôn âm với mọi x
Chứng minh rằng:
a, x^2-4x>-5 với mọi số thực x
b, Chứng minh 2x^2+4y^2-4x-4xy+5>0 với mọi số thực x;y
a) Xét \(x^2-4x+4=\left(x-2\right)^2\ge0\)
<=> \(x^2-4x\ge-4>-5\)
b) \(2x^2+4y^2-4x-4xy+5\)
= \(\left(x^2-4x+4\right)+\left(x^2-4xy+4y^2\right)+1\)
= \(\left(x-2\right)^2+\left(x-2y\right)^2+1\ge1>0\)
\(=x^2+4y^2+4xy+x^2-6x+9+1=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Ta có: \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\left(\forall x;y\right)\)
\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\forall x;y\)
=> đpcm