K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

Đáp án B.

 

Ta có H K / / B D ⇒ H K / / S B D ⇒ d H K ; S D = d H K ; S B D = d H ; S B D .

Dựng H M ⊥ B D ,  H I ⊥ S M

Do  H M ⊥ B D   và  S H ⊥ B D    nên  B D ⊥ S H M ⇒ H I ⊥ S B D

H M = 1 2 A O = a 2 4 ,  H D = A H 2 + A D 2 = a 5 2 , S H = S D 2 − H D 2 = a 3

H I = S H . H M S H 2 + H M 2 = a 3 . a 2 4 a 3 2 + a 2 4 2 = a 3 5

 

NV
5 tháng 2 2021

Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)

\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)

Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)

\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)

\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)

\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)

Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)

\(HE=CH.sin30^0=\dfrac{a}{2}\) 

\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)

24 tháng 9 2017

Chọn A.

Gọi H là trung điểm của CD, M là trung điểm của BC. Khi đó HM ⊥ BC, SM  ⊥ BC. Dễ thấy tam giác HBC vuông cân ở H, do đó tính được BC, SM. Từ đó tính được SH.

20 tháng 8 2017

Đáp án A

23 tháng 2 2021
Ggggghheeushyeyehejhdhshejhshshshsjsj
26 tháng 12 2019

Đáp án A

29 tháng 12 2018

9 tháng 8 2019

12 tháng 7 2019

Đáp án B

Ta có d(K;(SCD))

Ta có 

Có góc giữa SC và đáy là  nên ta có 

Ta có 

10 tháng 6 2018

Đáp án D

11 tháng 6 2019