TÌm các số tự nhiên n sao cho các phân số sau có giá trị là số nguyên:
a) n+4 phần n
b) n-2 phần 4
c) 6 phần n-1
c) n phần n-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(\frac{3n+15}{n+1}=\frac{3n+3+12}{n+1}=\frac{3.\left(n+1\right)+12}{n+1}=3+\frac{12}{n+1}\)
Để 3n+15/n+1 có giá trị nguyên
\(\Rightarrow\frac{12}{n+1}\inℤ\Rightarrow12⋮n+1\)
\(\Rightarrow n+1\inƯ_{\left(12\right)}=\left(1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right)\)
rùi bn thay giá trị của n+1 vào để tìm n nhé!
b) ta có: \(\frac{3n+5}{n-2}=\frac{3n-6+11}{n-2}=\frac{3.\left(n-2\right)+11}{n-2}=3+\frac{11}{n-2}\)
Để 3n+5/n-2 có giá trị nguyên
=> 11/n-2 thuộc z
=> 11 chia hết cho n-2 => n-2 thuộc Ư(11) = (1;-1;11;-11)
c) ta có: \(\frac{2n+13}{n-1}=\frac{2n-2+15}{n-1}=\frac{2.\left(n-1\right)+15}{n-1}=2+\frac{15}{n-1}\)
Để 2n+13/n-1 có giá trị nguyên => 15/n-1 thuộc Z
=> 15 chia hết cho n-1 => n-1 thuộc Ư(15)=(1;-1;3;-3;5;-5;15;-15)
d) ta có: \(\frac{6n+5}{2n+1}=\frac{6n+3+2}{2n+1}=\frac{3.\left(2n+1\right)+2}{2n+1}=3+\frac{2}{2n+1}\)
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
a, để n+4 phần 4 la so nguyên thì n+4 phai chia hết cho 4
Mà n chia hết cho n => 4 phai chia hết cho n => n thuộc vào ƯỚC của 4 (1,-1,2,-2,4,-4)
rồi OK tự kẻ bảng ma tình nhè
Các kí trong bài mik ko ki hiệu dc tự làm tiếp nhé
a: Để A nguyên thì \(n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{2;0;4;-2\right\}\)
b: Để B nguyên thì \(3n+1\in\left\{1;4\right\}\)
hay \(n\in\left\{0;1\right\}\)
c: Để C nguyên thì \(n+3⋮2n-1\)
\(\Leftrightarrow2n+6⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{1;0;4;-3\right\}\)
\(A=\dfrac{n+2}{n-1}=\dfrac{n-1+3}{n-1}=1+\dfrac{3}{n-1}\)
Đề A nguyên thì: 3 ⋮ n - 1
=> n - 1 ∈ Ư (3)
=> n - 1 ∈ {1; -1; 3; -3}
=> n ∈ {2; 0; 4; -2}