Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 30 ° .Thể tích V của khối chóp S.ABCD bằng
A. V = a 3 6 9 .
B. V = a 3 6 18 .
C. V = a 3 3 9 .
D. V = a 3 3 6 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Gọi H là tâm của hình vuông ABCD thì SH ⊥ (ABCD)
Do đó
Ta có:
A C = a ⇒ S A = A C tan 60 o = a 3 B D = 2 B I = 2 . B C . sin 60 o = a 3 V = 1 3 S A . S A B C D = 1 3 . S A . 1 2 . A C . B D
Đáp án A
Đáp án A
Gọi O = A C ∩ B D ⇒ S D ; S A C ^ = S D ; S O ^ = D S O ^ = 30 °
Ta có O D = a 2 2 ⇒ S O = a 6 2 ⇒ V = 1 3 S O . S A B C D = a 3 6 6
Đáp án C
Gọi O là tâm đáy ABCD. Khi đó S O ⊥ A B C D
suy ra AO là hình chiếu vuông góc của SA lên mặt phẳng đáy. Khi đó góc giữa cạnh bên SA và đáy là S A O ^
Suy ra S A O ^ = 60 °
Vậy thể tích khối chóp là:
V = 1 3 . S O . S A B C D = a 3 6 6
Đáp án B.
Chiều cao khối chóp:
h = a 2 2 . tan 30 ° = a 6 6 .
Do đó
V = 1 3 a 2 . h = 1 3 a 2 . a 6 6 = 6 a 3 18 .