Có 3 bạn nam và 3 bạn nữ được xếp vào một ghế dài có 6 vị trí. Hỏi có bao nhiêu cách xếp sao cho nam và nữ ngồi xen kẽ lẫn nhau
A. 48
B. 72
C. 24
D. 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là B.
• Kí hiệu số ghế là 1;2;3;4;5;6.
• Xếp trước 3 nam ngồi ở vị trí số lẻ và 3 nữ ngồi ở vị trí số chẳn và ngược lại
Ta có: 3!.3!.2! = 72
Để xác định, các ghế được đánh số từ 1 đến 10 tính từ trái sang phải.
a) Nếu các bạn nam ngồi ở các ghế ghi số lẻ thì các bạn nữ ngồi ở các ghế còn lại. Có 5! cách xếp bạn nam, 5! cách xếp bạn nữ. Tất cả có 5 ! 2 cách xếp.
Nếu các bạn nam ngồi ở các ghế ghi số chẵn, các bạn nữ ngồi ở các ghế còn lại thì có 5 ! 2 cách xếp nam và nữ.
Vậy có tất cả 2. 5 ! 2 cách xếp nam nữ ngồi xen kẽ nhau.
b) Các bạn nam được bố trí ngồi ở các ghế từ k đến k + 4, k = 1, 2, 3, 4, 5, 6. Trong mỗi trường hợp có 5 ! 2 cách xếp nam và nữ.
Vậy có 6. 5 ! 2 cách xếp mà các bạn nam ngồi cạnh nhau.
Để xác định, các ghế được đánh số thứ tự từ 1 đến 10 tính từ trái sang phải.
a) Nếu các bạn nam ngồi ở các ghế ghi số lẻ thì các bạn nữ ngồi ở các ghế còn lại. Có 5! cách xếp bạn nam, 5! cách xếp bạn nữ. Tất cả có \(\left(5!\right)^2\) cách xếp
Nếu bạn nam ngồi ở các ghế ghi số chẵn, các bạn nữ ngồi ở các ghế còn lại thì có \(\left(5!\right)^2\) cách xếp nam và nữ. Vậy có tất cả \(2.\left(5!\right)^2\) cách xếp nam nữ ngồi xen kẽ nhau.
b) Các bạn nam được bố trí ngồi ở các ghế từ \(k\) đến \(k+4,k=1,2,3,4,5,6\). Trong mỗi trường hợp có \(\left(5!\right)^2\) cách xếp nam và nữ. Vậy có \(6.\left(5!\right)^2\) cách xếp mà các bạn nam ngồi cạnh nhau.
Số cách xếp bạn nữ: 10!
Số cách xếp bạn nam: 10!
Xếp cả nam và nữ có 2 trường hợp
=> 10! x 10! x 2
a: Số cách xếp là: \(A^5_{10}=30240\left(cách\right)\)
b: TH1: 3 nam 2 nữ
=>Số cách xếp là: \(3!\cdot2!\cdot2!\)(cách)
TH2: 2 nam 3 nữ
=>Số cách xếp là: 2!*3!*2!(cách)
TH3: 1 nam 4 nữ
=>Số cách xếp là 1!*4!*2!(cách)
TH4: 0 nam 5 nữ
=>Số cách xếp là 5!(cách)
=>Số cách là \(2!\cdot2!\cdot3!+2!\cdot2!\cdot3!+1!\cdot4!\cdot2!+5!\left(cách\right)\)
c: Số cách chọn 2 nữ trong 7 nữ là:
\(C^2_7\left(cách\right)\)
Số cách xếp 3 nam và 2 nữ là:
\(3!\cdot3!\left(cách\right)\)
=>Số cách là: \(C^2_7\cdot3!\cdot3!\left(cách\right)\)
Chọn C
Tiến hành theo các bước sau:
Bước 1: Xếp 6 nam ngồi quanh bàn tròn, có 5! Cách xếp.
Bước 2: Vì 6 nam ngồi quanh bàn tròn nên có 6 khoảng trống để xếp 6 người nữ, vậy có 6! Cách xếp.
Theo quy tắc nhân ta có 5!.6! = 86 400 cách.
Đáp án A
Phương pháp :
+) Chọn vị trí cho các bạn nam (hoặc nữ).
+) Hoán đổi các vị trí.
+) Sử dụng quy tắc nhân.
Cách giải : Chọn 1 vị trí trong 2 vị trí đối xứng có C 2 1 cách chọn, như vậy có ( C 2 1 ) 4 = 2 4 cách chọn ghế cho 4 bạn nam.
4 bạn nam này có thể đổi chỗ cho nhau nên có 4! cách xếp
Vậy có cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ
Đáp án là B.
• Kí hiệu số ghế là 1;2;3;4;5;6.
• Xếp trước 3 nam ngồi ở vị trí số lẻ và 3 nữ ngồi ở vị trí số chẳn và ngược lại
Ta có: 3 ! . 3 ! . 2 ! = 72