Cho hình nón (N) có đường cao SO=h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt O M = x , 0 < x < h . C là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M, với hình nón (N). Tìm x để thể tích khối nón đỉnh O đáy là (C) lớn nhất.
A. h/2
B. h 2 2
C. h 3 2
D. h/3
Đáp án D
Gọi r là bán kính đáy của hình nón đỉnh O.
Ta có r R = h − x h ⇒ r = h − x h R
Chiều cao của khối nón đỉnh O là x
Thể tích của khối nón đỉnh O là:
V = 1 3 π h − x h 2 x = π R 2 6 h 2 h − x h − x 2 x ≤ π R 2 6 h 2 h − x + h − x + 2 x 3 3 = π R 2 6 h 2 2 h 3 3 = 4 π R 2 h 81
⇒ V m a x ⇔ h − x = 2 x ⇔ x = h 3