K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

Đáp án C

Xét y = 2x3 – 3x2 + 1 

Ta có: y’ = 6x2 – 6x

ð y’ = 0 x = 0 hoặc x = 1

Ta có bảng biến thiên

Số nghiệm phương trình đã cho m = 2x3 – 3x2 + 1 

= Số giao điểm của đồ thị hàm số y = 2x3 – 3x2 + 1 và đường thẳng y = m

-> 0<m<1

 

 

 

 

25 tháng 8 2021

a, Để pt có 2 nghiệm pb khi \(\Delta>0\)

\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)

b, Để pt trên là pt bậc 2 khi \(m\ne0\)

Để pt vô nghiệm khi \(\Delta< 0\)

\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)

c, Để pt trên là pt bậc 2 khi \(m\ne2\)

Để pt trên có nghiệm kép \(\Delta=0\)

\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)

\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)

d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)

\(=m^2+2m+1-8m-24\)

\(=m^2-6m-23\)

\(=m^2-6m+9-32\)

\(=\left(m-3\right)^2-32\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)

Ta có: \(x_1x_2=\dfrac{m+3}{2}\)

\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)

\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)

21 tháng 8 2021

cậu có thể giúp mình cả bài được không,cảm ơn cậu

a: Khi m=1 thì (1) sẽ là:

x^2-4x-5=0

=>x=5 hoặc x=-1

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

30 tháng 7 2021

\(mx^2+2\left(m-1\right)x+m+3=0\)(Đk:m≠0)

\(\Delta'=\left(m-1\right)^2-m\left(m+3\right)\)

\(\Delta'=m^2-2m+1-m^2-3m\)

\(\Delta'=1-5m\)

a,Để pt có nghiệm kép 

Thì\(\Delta'=0\)

\(\Leftrightarrow1-5m=0\Rightarrow m=\dfrac{1}{5}\)

b, Để pt có 2 nghiệm phân biệt

Thì\(\Delta'>0\)

\(\Leftrightarrow1-5m>0\Rightarrow m< \dfrac{1}{5}\)

c,Để pt có nghiệm 

Thì\(\Delta'\ge0\)

\(\Leftrightarrow1-5m\ge0\Rightarrow m\le\dfrac{1}{5}\)

d, Để pt vô nghiệm 

Thì\(\Delta'< 0\)

\(\Leftrightarrow1-5m< 0\Rightarrow m>\dfrac{1}{5}\)

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:
$m=0$ thì pt trở thành $-2x+3=0\Leftrightarrow x=\frac{3}{2}$

$m\neq 0$ thì pt là pt bậc 2 ẩn $x$

$\Delta'=(m-1)^2-m(m+3)=1-5m$

PT có nghiệm kép $\Leftrightarrow \Delta'=1-5m=0\Leftrightarrow m=\frac{1}{5}$

PT có 2 nghiệm pb $\Leftrightarrow \Delta'=1-5m>0$

$\Leftrightarrow m< \frac{1}{5}$

Vậy pt có 2 nghiệm pb khi $m< \frac{1}{5}$ và $m\neq 0$

PT có nghiệm khi \(\left[\begin{matrix} m=0\\ \Delta'=1-5m\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m=0\\ m\leq \frac{1}{5}\end{matrix}\right.\Leftrightarrow m\leq \frac{1}{5}\)

PT vô nghiệm khi $\Delta'=1-5m< 0$

$\Leftrightarrow m> \frac{1}{5}$

23 tháng 7 2021

còn cái nịt