Cho a,b là các số thực dương a>1,a#b và thỏa mãn log a b = 2 . Khi đó log a b a b bằng
A. - 3 2
B. -6
C. 3 2
D. 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\ge\dfrac{4}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}=4\)
dấu"=" xảy ra<=>\(a=b=\dfrac{1}{2}\)
Ta có \(a+b\ge2\sqrt{ab}\) (Cô-si 2 số) và \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}\) (Cô-si 2 số)
Nhân theo vế 2 BĐT trên, ta được \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{ab}}=4\).
ĐTXR \(\Leftrightarrow a=b\)
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Áp dụng BĐT cosi:
\(\left(a+\dfrac{1}{a}\right)\left(b+\dfrac{1}{b}\right)4=ab+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{1}{ab}\\ \ge ab+\dfrac{1}{ab}+2\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=ab+\dfrac{1}{ab}+2\)
Áp dụng tiếp BĐT cosi:
\(ab+\dfrac{1}{ab}=\left(16ab+\dfrac{1}{ab}\right)-15ab\\ \ge2\sqrt{\dfrac{16ab}{ab}}-15ab=8-15ab\\ \ge8-15\cdot\dfrac{a+b}{4}=8-15\cdot\dfrac{1}{4}=\dfrac{17}{4}\)
\(\Leftrightarrow ab+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{1}{ab}\ge\dfrac{17}{4}+2=\dfrac{25}{4}\)
Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)
Đáp án A
Ta có P = 1 2 . 1 - log a b log a b - 1 2 = 1 - 2 2 2 - 1 .
Đổi về cơ số a có
log a b a b = log a a b log a a b = 1 2 1 + log a b 1 - log a b = 1 2 ( 1 + 2 ) 1 - 2 = - 3 2
Chọn đáp án A.