Cho số phức z thỏa mãn z − 1 + i + z + 2 − 3 i = 5 và w = z − i . Gọi T là giá trị lớn nhất của |w|. Tìm T.
A. T = 5
B. T = 2 5
C. T = 2 2
D. T = 2 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mọi điểm M biểu diễn z đều phải thỏa mãn 2 điều kiện: vừa thuộc đường tròn (C) vừa thuộc đường thẳng \(\Delta\) (tham số P)
Do đó, M là giao điểm của (C) và \(\Delta\)
Hay tham số P phải thỏa mãn sao cho (C) và \(\Delta\) có ít nhất 1 điểm chung
Hay hệ pt nói trên có nghiệm (thật ra chi tiết đó là thừa, chỉ cần biện luận (C) và \(\Delta\) có ít nhất 1 điểm chung \(\Rightarrow d\left(I;\Delta\right)\le R\) là đủ)
Đáp án B.
Đặt suy ra tập hợp các điểm M(z) = (x;y) là đường tròn (C) có tâm I(3;4) và bán kính R = 5
Ta có
Ta cần tìm P sao cho đường thẳng ∆ và đường tròn (C) có điểm chung
Do đó
Đáp án C
HD: Ta có
Tập hợp điểm M(z) là đường tròn tâm I(3;-2), R=3.
Gọi A(1;2), B(5;2) và E(3;2) là trung điểm của AB suy ra P=MA+MB
Lại có
P lớn nhất ME lớn nhất.
Mà
Vậy
Đáp án C.
Từ giả thiết, ta có:
z − 3 + 4 i = 2 ⇔ 2 z − 6 + 8 i = 4 ⇔ 2 z + 1 − i − 7 + 9 i = 4
mà w = 2 z + 1 − i .
Khi đó:
w − 7 + 9 i = 4 ⇒ w max = 7 2 + 9 2 + 4 = 130 + 4 w min = 7 2 + 9 2 − 4 = 130 − 4 .
Đáp án C