K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

24 tháng 4 2018

a: BB'=2a^2:a=2a

V=BB'*S ABC

=2a*1/2a^2

=a^3

MN
30 tháng 8

a) Với hình lăng trụ đứng ABC.ABC, diện tích tứ giác ABBA bằng 2a^2 và đáy ABC là tam giác vuông cân tại A, ABa. Thể tích khối lăng trụ ABC.ABC có thể tính bằng công thức: \(V = \frac{1}{3} \times \text{Diện tích đáy} \times \text{Chiều cao}\). Vì đáy ABC là tam giác vuông cân nên diện tích đáy là \(\frac{1}{2} \times a \times a = \frac{1}{2}a^2\). Chiều cao của lăng trụ chính là cạnh AB, vì tam giác ABa là tam giác vuông cân nên \(AB = \sqrt{2}a\). Do đó, thể tích khối lăng trụ ABC.ABC là: \(V = \frac{1}{3} \times \frac{1}{2}a^2 \times \sqrt{2}a = \frac{\sqrt{2}}{6}a^3\). b) Với hình lăng trụ đứng ABC.ABC, góc giữa (ABC) và (ABC) bằng 60°, ta cũng áp dụng công thức tính thể tích khối lăng trụ: \(V = \frac{1}{3} \times \text{Diện tích đáy} \times \text{Chiều cao}\). Diện tích đáy và chiều cao đã được tính tương tự như phần a), ta có thể tính được thể tích khối lăng trụ ABC.ABC.

5 tháng 11 2019

Đáp án B

12 tháng 3 2017

Gọi M là trung điểm BC: BC = 2a; AG = 2 3 AI = 2 a 3 ; A ' A G ^ = 60 o .

Suy ra: A ' G = A G tan 60 o = 2 a 3 3

Ta có: V = S A B C . A ' G = 1 2 AB.AC.A'G

= 1 2 a. a 3 . 2 a 3 3 = a 3

Vậy  V 3 + V a 3 - 1 = a

Đáp án B

20 tháng 5 2017

Khối đa diện

Khối đa diện

15 tháng 10 2017

Đáp án C

Ta có 

Suy ra 

∆ A'AC vuông tại B nên 

Suy ra:

Xét hàm số 

Xét hàm số  

Ta có 

Lập bảng biến thiên, suy ra 

24 tháng 4 2019

15 tháng 8 2017

Chọn B.

 

Gọi M,G lần lượt là trung điểm của BC và trọng tâm G của tam giác ABC.

Do tam giác ABC đều cạnh a nên 

Trong mặt phẳng (AA'M)  kẻ MH ⊥ AA'. Khi đó: 

Vậy MH là đoạn vuông góc chung của AA' và BC nên MH =  a 3 4 .

Trong tam giác AA'G kẻ 

Xét tam giác AA'G vuông tại G ta có: 

Vậy thể tích của khối lăng trụ đã cho là  

 

26 tháng 5 2018